

Welcome to ATD’s documentation!

	The ATD Project

	The ATD Language
	ATD core syntax reference
	Introduction

	ATD language

	Interoperability with other tools
	JSON Schema

	OCaml Support - atdgen
	Tutorial
	What is atdgen?

	What are the advantages of atdgen?

	Prerequisites

	Getting started

	Inspecting and pretty-printing JSON

	Inspecting biniou data

	Optional fields and default values

	Smooth protocol upgrades

	Data validation

	Modularity: referring to type definitions from another ATD file

	Managing JSON configuration files

	Integration with ocamldoc

	Integration with build systems

	Dealing with untypable JSON

	Atdgen reference
	Description

	Command-line usage

	Default type mapping

	ATD Annotations

	Atdgen runtime library

	Java Support - atdj
	Installation

	Quick-start

	Generating the interface

	Generating Javadoc documentation

	Generating a class graph

	Translation reference
	Bools, ints, floats, string, lists

	Options

	Records

	Sums

	The Atdj and Visitor interfaces

	Scala Support - atds

	Python Support - atdpy
	Tutorials
	Hello World

	ATD Records, JSON objects, Python classes

	How-to guides
	Defining default field values

	Renaming field names

	Deep dives

	Reference
	Type mapping

	Supported ATD annotations

	TypeScript Support - atdts
	Tutorials
	Hello World

	ATD Records, JSON objects, TypeScript objects

	How-to guides
	Defining default field values

	Renaming field names

	Deep dives

	Reference
	Type mapping

	Supported ATD annotations

The ATD Project

The ATD project aims to facilitate the design and the implementation of
APIs, and in particular JSON APIs. It offers type safety and automatic
data validation by deriving boilerplate code from type definitions.
The data ends up being represented with idiomatic data structures in
the target programming language, removing the hassle of manually
converting from/to the JSON representation.

Currently, the supported target languages are OCaml, Java, Scala, and
Python. The project is run by volunteers and users from various
organizations. Check out the
ATD project on GitHub [https://github.com/ahrefs/atd] for any bug
report, feature request, or question.

Some properties of interest of ATD schemas include:

	support for optional fields and default field values

	support for sum types aka algebraic data types or tagged unions

	options to select alternate representations than the default, e.g.
use a JSON object rather than an array of pairs

The ATD Language

ATD core syntax reference

Introduction

ATD stands for Adjustable Type Definitions.

(* This is a sample ATD file *)

type profile = {
 id : string;
 email : string;
 ~email_validated : bool;
 name : string;
 ?real_name : string option;
 ~about_me : string list;
 ?gender : gender option;
 ?date_of_birth : date option;
}

type gender = [Female | Male]

type date = {
 year : int;
 month : int;
 day : int;
}

ATD is a language for defining data types across multiple programming languages
and multiple data formats. That’s it.

We provide an OCaml library that provides a parser and a collection of tools
that make it easy to write data validators and code generators based on ATD
definitions.

Unlike big frameworks that provide everything in one monolithic package, we
split the problem of data exchange into logical modules and ATD is one of them.
In particular, we acknowledge that the following pieces have little in common
and should be defined and implemented separately:

	data type specifications

	transport protocols

	serialization formats

Ideally we want just one single language for defining data types and it should
accomodate all programming languages and data formats. ATD can play this role,
but its OCaml implementation makes it particularly easy to translate ATD
specifications into other interface definition languages if needed.

It is however much harder to imagine that a single transport protocol and a
single serialization format would ever become the only ones used. A reader from
the future might wonder why we are even considering defining a transport
protocol and a serialization format together. This has been a widespread
practice at least until the beginning of the 21st century (ONC RPC, ICE, Thrift,
etc.). For mysterious reasons, people somehow became convinced that calls to
remote services should be made to mimic internal function calls, pretending that
nothing really bad could happen on the way between the caller and the remote
service. Well, I don’t let my 3-old daughter go to school by herself because the
definition of the external world is precisely that it is unsafe.

Data input is by definition unsafe. A program whose internal data is corrupted
should abort but a failed attempt to read external data should not cause a
program to abort. On the contrary, a program should be very resistent to all
forms of data corruption and attacks and provide the best diagnosis possible
when problems with external data occur.

Because data exchange is critical and involves multiple partners, we depart from
magic programming language-centric or company-centric approaches. We define ATD,
a data type definition language designed for maximum expressivity, compatibility
across languages and static type checking of programs using such data.

Scope

ATD offers a core syntax for type definitions, i.e. an idealized view of the
structure of data. Types are mapped to each programming language or data format
using language-specific conventions. Annotations can complete the type
definitions in order to specify options for a particular language. Annotations
are placed in angle brackets after the element they refer to:

type profile = {
 id : int <ocaml repr="int64">;
 (*
 An int here will map to an OCaml int64 instead of
 OCaml's default int type.
 Other languages than OCaml will use their default int type.
 *)

 age : int;
 (* No annotation here, the default int type will be used. *)
}

ATD supports:

	the following atomic types: bool, int, float, string and unit;

	built-in list and option types;

	records aka structs with a syntax for optional fields with or
without default;

	tuples;

	sum types aka variant types, algebraic data types or tagged unions;

	parametrized types;

	inheritance for both records and sum types;

	abstract types;

	arbitrary annotations.

ATD by design does not support:

	function types, function signatures or method signatures;

	a syntax to represent values;

	a syntax for submodules.

Language overview

ATD was strongly inspired by the type system of ML and OCaml. Such a
type system allows static type checking and type inference, properties
which contribute to the safety and conciseness of the language.

Unlike mainstream languages like Java, C++, C# or Python to name a
few, languages such as Haskell or OCaml offer sum types,
also known as algebraic data types or variant types. These allow to
specify that an object is of one kind or another without ever
performing dynamic casts.

(* Example of a sum type in ATD. The vertical bar reads `or'. *)
type shape = [
 Square of float (* argument: side length *)
 | Rectangle of (float * float) (* argument: width and height *)
 | Circle of float (* argument: radius *)
 | Dot (* no argument *)
]

A notable example of sum types is the predefined option type.
An object of an option type contains either one value of a given type
or nothing. We could define our own int_option type as follows:

type int_option = [None | Some of int]

ATD supports parametrized types also known as generics in Java or
templates in C++. We could define our own generic option type as
follows:

type 'a opt = [None | Some of 'a]
 (* 'a denotes a type parameter. *)

type opt_int = int opt
 (* equivalent to int_option defined in the previous example *)

type opt_string = string opt
 (* same with string instead of int *)

In practice we shall use the predefined option type.
The option type is fundamentally different from nullable objects since
the latter don’t allow values that would have type ‘a option option.

ATD also support product types. They come in two forms: tuples and
records:

type tuple_example = (string * int)

type record_example = {
 name : string;
 age : int;
}

Although tuples in theory are not more expressive than records, they are much
more concise and languages that support them natively usually do not require
type definitions.

Finally, ATD supports multiple inheritance which is a simple mechanism for
adding fields to records or variants to sum types:

type builtin_color = [
 Red | Green | Blue | Yellow
 | Purple | Black | White
]

type rgb = (float * float * float)
type cmyk = (float * float * float * float)

(* Inheritance of variants *)
type color = [
 inherit builtin_color
 | Rgb of rgb
 | Cmyk of cmyk
]

type basic_profile = {
 id : string;
 name : string;
}

(* Inheritance of record fields *)
type full_profile = {
 inherit basic_profile;
 date_of_birth : (int * int * int) option;
 street_address1 : string option;
 street_address2 : string option;
 city : string option;
 zip_code : string option;
 state : string option;
}

Editing and validating ATD files

The extension for ATD files is .atd. Editing ATD files is best achieved
using an OCaml-friendly editor since the ATD syntax is vastly compatible with
OCaml and uses a subset of OCaml’s keywords.

Emacs users can use caml-mode or tuareg-mode to edit ATD files. Adding the
following line to the ~/.emacs file will automatically use tuareg-mode when
opening a file with a .atd extension:

(add-to-list 'auto-mode-alist '("\\.atd\\'" . tuareg-mode))

The syntax of an ATD file can be checked with the program atdcat provided with
the OCaml library atd. atdcat pretty-prints its input data, optionally after
some transformations such as monomorphization or inheritance. Here is the output
of atdcat -help:

Usage: _build/install/default/bin/atdcat FILE
 -o <path>
 write to this file instead of stdout
 -x
 make type expressions monomorphic
 -xk
 keep parametrized type definitions and imply -x.
 Default is to return only monomorphic type definitions
 -xd
 debug mode implying -x
 -i
 expand all 'inherit' statements
 -if
 expand 'inherit' statements in records
 -iv
 expand 'inherit' statements in sum types
 -jsonschema <root type name>
 translate the ATD file to JSON Schema.
 -jsonschema-no-additional-properties
 emit a JSON Schema that doesn't tolerate extra fields on JSON
 objects.
 -jsonschema-version { draft-2019-09 | draft-2020-12 }
 specify which version of the JSON Schema standard to target.
 Default: latest supported version, which is currently
 'draft-2020-12 '.
 -ml <name>
 output the ocaml code of the ATD abstract syntax tree
 -html-doc
 replace directly <doc html="..."> by (*html ... *)
 or replace <doc text="..."> by (*html ... *)
 where the contents are formatted as HTML
 using <p>, <code> and <pre>.
 This is suitable input for "caml2html -ext html:cat"
 which converts ATD files into HTML.
 -strip NAME1[,NAME2,...]
 remove all annotations of the form <NAME1 ...>,
 <NAME2 ...>, etc.
 -strip-all
 remove all annotations
 -version
 print the version of atd and exit
 -help Display this list of options
 --help Display this list of options

ATD language

This is a precise description of the syntax of the ATD language, not a
tutorial.

Notations

Lexical and grammatical rules are expressed using a BNF-like syntax.
Graphical terminal symbols use unquoted strings in typewriter font.
Non-graphical characters use their official uppercase ASCII name such
as LF for the newline character or SPACE for the space character.
Non-terminal symbols use the regular font and link to their
definition. Parentheses are used for grouping.

The following postfix operators are used to specify repeats:

	x*

	0, 1 or more occurrences of x

	x?

	0 or 1 occurrence of x

	x+

	1 or more occurrences of x

Lexical rules

ATD does not enforce a particular character encoding other than ASCII
compatibility. Non-ASCII text and data found in annotations and
in comments may contain arbitrary bytes in the non-ASCII range 128-255
without escaping. The UTF-8 encoding is however strongly recommended
for all text. The use of hexadecimal or decimal escape sequences is
recommended for binary data.

An ATD lexer splits its input into a stream of tokens,
discarding whitespace and comments.

	token ::=

	keyword

	

	|

	lident

	

	|

	uident

	

	|

	tident

	

	|

	string

	

	ignorable ::=

	space

	discarded

	|

	comment

	

	space ::=

	SPACE | TAB | CR | LF

	

	blank ::=

	SPACE | TAB

	

	comment ::=

	(* (comment | string | byte)* *)

	

	lident ::=

	(lower | _ identchar) identchar*

	lowercase
identifier

	uident ::=

	upper identchar*

	uppercase
identifier

	tident ::=

	' lident

	type parameter

	lower ::=

	a…``z``

	

	upper ::=

	A…``Z``

	

	identchar ::=

	upper | lower | digit | _ | '

	

	string ::=

	" (substring | ')* "

	double-quoted
string literal,
used in
annotations

	|

	' (substring | ")* '

	single-quoted
string literal,
used in
annotations

	substring ::=

	\\

	single backslash

	|

	\"

	double quote

	|

	\'

	single quote

	|

	\x hex hex

	single byte
in hexadecimal
notation

	|

	\ digit digit digit

	single byte
in decimal
notation

	|

	\n

	LF

	|

	\r

	CR

	|

	\t

	TAB

	|

	\b

	BS

	|

	\ CR? LF blank*

	discarded

	|

	not-backslash

	any byte
except \
or " or '

	digit ::=

	0 … 9

	

	hex ::=

	0 … 9

	

	|

	a… f

	

	|

	A … F

	

	keyword ::=

	(|) | [

	all keywords

	|

] | { | }

	

	|

	< | >

	

	|

	; | , | : | *

	

	|

	| | = | ? | ~

	

	|

	type | of | inherit

	

Grammar

	module ::=

	annot* typedef*

	entry point

	annot ::=

	< lident annot-field* >

	annotation

	annot-field ::=

	(lident (= string)?)

	

	typedef ::=

	type params? lident annot
= expr

	type definition

	params ::=

	tident

	one parameter

	|

	(tident (, tident)+)

	two or more
parameters

	expr ::=

	expr-body annot*

	type expression

	|

	tident

	

	expr-body ::=

	args? lident

	

	|

	(
(cell (* cell)*)?
)

	tuple type

	|

	{
((field (; field)*) ;?)?
}

	record type

	|

	[
(|? variant (| variant)*)?
]

	sum type

	args ::=

	expr

	one argument

	|

	(expr (, expr)+)

	two or more
arguments

	cell ::=

	(annot+ :)? expr

	

	field ::=

	(? | ~)? lident = expr

	

	|

	inherit expr

	

	variant ::=

	uident annot* of expr

	

	|

	uident annot*

	

	|

	inherit expr

	

Predefined type names

The following types are considered predefined and may not be
redefined.

	Type name

	Intended use

	unit

	Type of just one value, useful with parametrized types

	bool

	Boolean

	int

	Integer

	float

	Floating-point number

	string

	Sequence of bytes or characters

	'a option

	Container of zero or one element of type ‘a.
See also ‘a nullable.

	'a list

	Collection or sequence of elements of type ‘a

	'a nullable

	Extend type ‘a with an extra conventional value,
typically called “null”. The operation is idempotent,
i.e. ‘a nullable is equivalent to
‘a nullable nullable.

	'a shared

	Values of type ‘a for which sharing must be preserved

	'a wrap

	Values on which a custom, reversible transformation
may be applied, as specified by
language-specific annotations.

	abstract

	Unspecified type. By default, this is meant to
accept any data that is syntactically valid, such as
any JSON data that could be parsed successfully.
With the help of ATD annotations, this can be
used to express types not supported by the ATD
language such as “either a boolean or a string”.

Shared values (deprecated)

ATD supports a special type x shared where x can be
any monomorphic type expression.
It allows notably to represent cyclic values and to enforce that cycles
are preserved during transformations such as serialization.

(* Example of a simple graph type *)
type shared_node = node shared (* sharing point *)
type graph = shared_node list
type node = {
 label : string;
 neighbors : shared_node list;
}

Two shared values that are physically identical must remain physically
identical after any translation from one data format to another.

Each occurrence of a shared type expression in the ATD
source definition defines its own sharing point.
Therefore the following attempt at defining a graph type will not
preserve cycles because two sharing points are defined:

(* Incorrect definition of a graph type *)
type node = {
 label : string;
 neighbors : node shared (* sharing point 1 *) list;
}

(* Second occurrence of "shared", won't preserve cycles! *)
type graph = node shared (* sharing point 2 *) list

There is actually a way of having multiple shared type expressions using the
same sharing point but this feature is designed for code generators and should
not be used in handwritten ATD definitions. The technique consists in providing
an annotation of the form <share id=x> where x is any string
identifying the sharing point. The graph example can be rewritten correctly as:

type node = {
 label : string;
 neighbors : node shared <share id="1"> list;
}

type graph = node shared <share id="1"> list

Interoperability with other tools

JSON Schema

ATD type definitions can be translated to
JSON Schema [https://json-schema.org/]
with atdcat. The user must specify the main type on the command
line since ATD doesn’t have a notion of main type or root type.
This can be useful for target languages that are not yet supported by
ATD or for educational purposes.

Example

Input: ATD file message.atd:

type msg = {
 subject: string;
 ?body: string option;
 ~attachments: attachment list;
}

type attachment = [
 | Image of string
 | Virus
]

Conversion to JSON Schema:

$ atdcat -jsonschema msg message.atd -o message.schema.json

Output: JSON Schema file message.schema.json:

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "description": "Translated by atdcat from 'message.atd'",
 "type": "object",
 "required": ["subject"],
 "properties": {
 "subject": { "type": "string" },
 "body": { "type": "string" },
 "attachments": {
 "type": "array",
 "items": { "$ref": "#/definitions/attachment" }
 }
 },
 "definitions": {
 "attachment": {
 "oneOf": [
 {
 "type": "array",
 "minItems": 2,
 "items": false,
 "prefixItems": [{ "const": "Image" }, { "type": "string" }]
 },
 { "const": "Virus" }
]
 }
 }
}

The jsonschema tool (Python implementation) can validate JSON data
using the JSON Schema file that we generated. For example, passing an
empty object {} correctly results in an error telling us the subject
field is missing:

$ jsonschema message.json -i <(echo '{}')
{}: 'subject' is a required property

With valid JSON input such as
{"subject": "hello", "attachments": ["Virus"]}, the command
exits successfully and silently:

$ jsonschema message.json -i <(echo '{"subject": "hello", "attachments": ["Virus"]}')

OCaml Support - atdgen

Tutorial

What is atdgen?

Atdgen is a tool that derives OCaml boilerplate code from type definitions.
Currently it provides support for:

	JSON [http://json.org/] serialization and deserialization.

	Biniou [https://raw.githubusercontent.com/ahrefs/atd/master/doc/biniou-format.txt] serialization and deserialization.
Biniou is a binary format extensible like JSON but more compact
and faster to process.

	Convenience functions for creating and validating OCaml data.

What are the advantages of atdgen?

Atdgen has a number of advantages over its predecessor json-static
which was based on Camlp4:

	produces explicit interfaces which describe what is available to
the user (.mli files).

	produces readable OCaml code that can be easily reviewed
(.ml files).

	produces fast code, 3x faster than json-static.

	runs fast, keeping build times low.

	same ATD definitions can be used to generate code other than
OCaml. See for instance
atdj
which generates Java classes for JSON IO.
Auto-generating GUI widgets from type definitions is another
popular use of annotated type definitions. The implementation of
such code generators is facilitated by the
atd library.

Prerequisites

This tutorial assumes that you are using atdgen version 1.5.0 or above.
The following command tells you which version you are using:

$ atdgen -version
1.5.0

The recommended way of installing atdgen and all its dependencies is with
opam [http://opam.ocamlpro.com/]:

$ opam install atdgen

Getting started

From now on we assume that atdgen 1.5.0 or above is installed properly.

$ atdgen -version
1.5.0

Type definitions are placed in a .atd file (hello.atd):

type date = {
 year : int;
 month : int;
 day : int;
}

Our handwritten OCaml program is hello.ml:

open Hello_t
let () =
 let date = { year = 1970; month = 1; day = 1 } in
 print_endline (Hello_j.string_of_date date)

We produce OCaml code from the type definitions using atdgen:

$ atdgen -t hello.atd # produces OCaml type definitions
$ atdgen -j hello.atd # produces OCaml code dealing with JSON

We now have _t and _j files produced by atdgen -t and atdgen -j
respectively:

$ ls
hello.atd hello.ml hello_j.ml hello_j.mli hello_t.ml hello_t.mli

We compile all .mli and .ml files:

$ ocamlfind ocamlc -c hello_t.mli -package atdgen
$ ocamlfind ocamlc -c hello_j.mli -package atdgen
$ ocamlfind ocamlopt -c hello_t.ml -package atdgen
$ ocamlfind ocamlopt -c hello_j.ml -package atdgen
$ ocamlfind ocamlopt -c hello.ml -package atdgen
$ ocamlfind ocamlopt -o hello hello_t.cmx hello_j.cmx hello.cmx -package atdgen -linkpkg

And finally we run our hello program:

$./hello
{"year":1970,"month":1,"day":1}

Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/hello]

Inspecting and pretty-printing JSON

Input JSON data:

$ cat single.json
[1234,"abcde",{"start_date":{"year":1970,"month":1,"day":1},
"end_date":{"year":1980,"month":1,"day":1}}]

Pretty-printed JSON can be produced with the ydump command:

$ ydump single.json
[
 1234,
 "abcde",
 {
 "start_date": { "year": 1970, "month": 1, "day": 1 },
 "end_date": { "year": 1980, "month": 1, "day": 1 }
 }
]

Multiple JSON objects separated by whitespace, typically one JSON object
per line, can also be pretty-printed with ydump. Input:

$ cat stream.json
[1234,"abcde",{"start_date":{"year":1970,"month":1,"day":1},
"end_date":{"year":1980,"month":1,"day":1}}]
[1,"a",{}]

In this case the -s option is required:

$ ydump -s stream.json
[
 1234,
 "abcde",
 {
 "start_date": { "year": 1970, "month": 1, "day": 1 },
 "end_date": { "year": 1980, "month": 1, "day": 1 }
 }
]
[1, "a", {}]

From an OCaml program, pretty-printing can be done with Yojson.Safe.prettify
which has the following signature:

val prettify : string -> string

We wrote a tiny program that simply calls the prettify function on
some predefined JSON data (file prettify.ml):

let json =
"[1234,\"abcde\",{\"start_date\":{\"year\":1970,\"month\":1,\"day\":1},
\"end_date\":{\"year\":1980,\"month\":1,\"day\":1}}]"

let () = print_endline (Yojson.Safe.prettify json)

We now compile and run prettify.ml:

$ ocamlfind ocamlopt -o prettify prettify.ml -package atdgen -linkpkg
$./prettify
[
 1234,
 "abcde",
 {
 "start_date": { "year": 1970, "month": 1, "day": 1 },
 "end_date": { "year": 1980, "month": 1, "day": 1 }
 }
]

Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/pretty-json]

Inspecting biniou data

Biniou is a binary format that can be displayed as text using a generic command
called bdump. The only practical difficulty is to recover the original field
names and variant names which are stored as 31-bit hashes. Unhashing them is
done by consulting a dictionary (list of words) maintained by the user.

Let’s first produce a sample data file tree.dat containing the
biniou representation of a binary tree. In the same program
we will also demonstrate how to render biniou data into text from an
OCaml program.

Here is the ATD file defining our tree type (file tree.atd):

type tree = [
 | Empty
 | Node of (tree * int * tree)
]

This is our OCaml program (file tree.ml):

open Printf

(* sample value *)
let tree : Tree_t.tree =
 `Node (
 `Node (`Empty, 1, `Empty),
 2,
 `Node (
 `Node (`Empty, 3, `Empty),
 4,
 `Node (`Empty, 5, `Empty)
)
)

let () =
 (* write sample value to file *)
 let fname = "tree.dat" in
 Atdgen_runtime.Util.Biniou.to_file Tree_b.write_tree fname tree;

 (* write sample value to string *)
 let s = Tree_b.string_of_tree tree in
 printf "raw value (saved as %s):\n%S\n" fname s;
 printf "length: %i\n" (String.length s);

 printf "pretty-printed value (without dictionary):\n";
 print_endline (Bi_io.view s);

 printf "pretty-printed value (with dictionary):\n";
 let unhash = Bi_io.make_unhash ["Empty"; "Node"; "foo"; "bar"] in
 print_endline (Bi_io.view ~unhash s)

Compilation:

$ atdgen -t tree.atd
$ atdgen -b tree.atd
$ ocamlfind ocamlopt -o tree \
 tree_t.mli tree_t.ml tree_b.mli tree_b.ml tree.ml \
 -package atdgen -linkpkg

Running the program:

$./tree
raw value (saved as tree.dat):
"\023\179\2276\"\020\003\023\179\2276\"\020\003\023\003\007\170m\017\002\023\003\007\170m\017\004\023\179\2276\"\020\003\023\179\2276\"\020\003\023\003\007\170m\017\006\023\003\007\170m\017\b\023\179\2276\"\020\003\023\003\007\170m\017\n\023\003\007\170m"
length: 75
pretty-printed value (without dictionary):
<#33e33622:
 (<#33e33622: (<#0307aa6d>, 1, <#0307aa6d>)>,
 2,
 <#33e33622:
 (<#33e33622: (<#0307aa6d>, 3, <#0307aa6d>)>,
 4,
 <#33e33622: (<#0307aa6d>, 5, <#0307aa6d>)>)>)>
pretty-printed value (with dictionary):
<"Node":
 (<"Node": (<"Empty">, 1, <"Empty">)>,
 2,
 <"Node":
 (<"Node": (<"Empty">, 3, <"Empty">)>,
 4,
 <"Node": (<"Empty">, 5, <"Empty">)>)>)>

Now let’s see how to pretty-print any biniou data from the command line.
Our sample data are now in file tree.dat:

$ ls -l tree.dat
-rw-r--r-- 1 martin martin 75 Apr 17 01:46 tree.dat

We use the command bdump to render our sample biniou data as text:

$ bdump tree.dat
<#33e33622:
 (<#33e33622: (<#0307aa6d>, 1, <#0307aa6d>)>,
 2,
 <#33e33622:
 (<#33e33622: (<#0307aa6d>, 3, <#0307aa6d>)>,
 4,
 <#33e33622: (<#0307aa6d>, 5, <#0307aa6d>)>)>)>

We got hashes for the variant names Empty and Node. Let’s add them to the
dictionary:

$ bdump -w Empty,Node tree.dat
<"Node":
 (<"Node": (<"Empty">, 1, <"Empty">)>,
 2,
 <"Node":
 (<"Node": (<"Empty">, 3, <"Empty">)>,
 4,
 <"Node": (<"Empty">, 5, <"Empty">)>)>)>

bdump remembers the dictionary so we don’t have to pass the -w option
anymore (for this user on this machine). The following now works:

$ bdump tree.dat
<"Node":
 (<"Node": (<"Empty">, 1, <"Empty">)>,
 2,
 <"Node":
 (<"Node": (<"Empty">, 3, <"Empty">)>,
 4,
 <"Node": (<"Empty">, 5, <"Empty">)>)>)>

Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/inspect-biniou]

Optional fields and default values

Although OCaml records do not support optional fields, both the JSON
and biniou formats make it possible to omit certain fields on a
per-record basis.

For example the JSON record { “x”: 0, “y”: 0 } can be more
compactly written as {} if the reader knows the default values for
the missing fields x and y. Here is the corresponding type
definition:

type vector_v1 = { ~x: int; ~y: int }

~x means that field x supports a default value. Since we do not specify
the default value ourselves, the built-in default is used, which is 0.

If we want the default to be something else than 0, we just have to specify it
as follows:

type vector_v2 = {
 ~x <ocaml default="1">: int; (* default x is 1 *)
 ~y: int; (* default y is 0 *)
}

It is also possible to specify optional fields without a default value. For
example, let’s add an optional z field:

type vector_v3 = {
 ~x: int;
 ~y: int;
 ?z: int option;
}

The following two examples are valid JSON representations of data of type
vector_v3:

{ "x": 2, "y": 2, "z": 3 } // OCaml: { x = 2; y = 2; z = Some 3 }

{ "x": 2, "y": 2 } // OCaml: { x = 2; y = 2; z = None }

By default, JSON fields whose value is null are treated
as missing fields. The following two JSON objects are therefore equivalent:

{ "x": 2, "y": 2, "z": null }
{ "x": 2, "y": 2 }

Note also the difference between ?z: int option and ~z: int option:

type vector_v4 = {
 ~x: int;
 ~y: int;
 ~z: int option; (* no unwrapping of the JSON field value! *)
}

Here are valid values of type vector_v4, showing that it is usually not what
is intended:

{ "x": 2, "y": 2, "z": ["Some", 3] }

{ "x": 2, "y": 2, "z": "None" }

{ "x": 2, "y": 2 }

Smooth protocol upgrades

Problem: you have a production system that uses a specific JSON or biniou
format. It may be data files or a client-server pair. You now want to add a
field to a record type or to add a case to a variant type.

Both JSON and biniou allow extra record fields. If the consumer does not know
how to deal with the extra field, the default behavior is to happily ignore it.

Adding or removing an optional record field

type t = {
 x: int;
 y: int;
}

Same .atd source file, edited:

type t = {
 x: int;
 y: int;
 ~z: int; (* new field *)
}

	Upgrade producers and consumers in any order

	Converting old data is not required nor useful

Adding a required record field

type t = {
 x: int;
 y: int;
}

Same .atd source file, edited:

type t = {
 x: int;
 y: int;
 z: int; (* new field *)
}

	Upgrade all producers before the consumers

	Converting old data requires special-purpose hand-written code

Removing a required record field

	Upgrade all consumers before the producers

	Converting old data is not required but may save some storage space
(just read and re^write each record using the new type)

Adding a variant case

type t = [A | B]

Same .atd source file, edited:

type t = [A | B | C]

	Upgrade all consumers before the producers

	Converting old data is not required and would have no effect

Removing a variant case

	Upgrade all producers before the consumers

	Converting old data requires special^purpose hand^written code

Avoiding future problems

	In doubt, use records rather than tuples because it makes it possible to add
or remove any field or to reorder them.

	Do not hesitate to create variant types with only one case or records with
only one field if you think they might be extended later.

Data validation

Atdgen can be used to produce data validators for all types defined in an ATD
file, based on user-given validators specified only for certain types. A simple
example is:

type t = string <ocaml valid="fun s -> String.length s >= 8"> option

As we can see from this example, the validation function is specified using the
annotation <ocaml valid="p">, where p is a predicate p : t -> bool,
returning true when the value of type t is valid and false
otherwise.

Calling atdgen -v on a file containing this specification will produce
a validation function equivalent to the following implementation:

let validate_t path x =
 match x with
 | None -> None
 | Some x ->
 let msg = "Failed check by fun s -> String.length s >= 8" in
 if (fun s -> String.length s >= 8) x
 then None
 else Some {error_path = path; error_msg = msg}

Let’s consider this particular example as an illustration of the general shape
of generated validation functions.

The function takes two arguments: the first, path, is a list indicating
where the second, x, was encountered. As specified by our example .atd
code above, x has type t option.

The body of the validation function does two things:

1. it checks the value of x against the validation function specified in our
.atd file, namely, checking whether there is Some s, and verifying that
s is at least 8 characters long if so
2. in the event that the validation check fails, it constructs an appropriate
error record.

In general, generated validation functions for a type t have a type
equivalent to validate_t : path -> t -> error option, where the path
gives the current location in a data structure and the error is a record of
the location of, and reason for, validation failure.

A return value of None indicates successful validation, while Some
{error_path; error_msg} tells us where and why validation failed.

Let’s now consider a more realistic example with complex validators defined in a
separate .ml file. We will define a data structure representing a section of
a resume recording work experience. We will also define validation functions
that can enforce certain properties to protect against errors and junk data.

In the course of this example, we will manually create the following 3 source
files:

	resume.atd: contains the type definitions with annotations

	resume_util.ml: contains our handwritten validators

	resume.ml: is our main program that creates data and checks it using our
generated validation functions.

After generating additional code with atdgen, we will end up with the
following OCaml modules:

	Resume_t: generated into resume_t.ml by atdgen -t resume.atd, this
provides our OCaml type definitions

	Resume_util: written manually in resume_util.ml, this depends on
Resume_t and provides validators we will use in resume.atd

	Resume_v: generated into resume_v.ml by atdgen -v resume.atd, this
depends on Resume_util and Resume_t and provides a validation function
for each type

	Resume_j: generated into resume_j.ml by atdgen -j resume.atd, this
provides functions to serialize and deserialize data in and out of JSON.

	Resume: written manually in resume.ml, this depends on Resume_v,
and Resume_t, and makes use of the generated types and validation
functions.

To begin, we specify type definitions for a data structure representing a resume
in resume.atd:

type text = string <ocaml valid="Resume_util.validate_some_text">

type date = {
 year : int;
 month : int;
 day : int;
} <ocaml valid="Resume_util.validate_date">

type job = {
 company : text;
 title : text;
 start_date : date;
 ?end_date : date option;
} <ocaml valid="Resume_util.validate_job">

type work_experience = job list

We can now call atdgen -t resume.atd to generate our Resume_t module in
resume_t.ml, providing our data types. Using these data types, we’ll define
the following handwritten validators in resume_util.ml (note that we’ve
already referred to these validators in resume.atd):

open Resume_t

let ascii_printable c =
 let n = Char.code c in
 n >= 32 && n <= 127

(*
 Check that string is not empty and contains only ASCII printable
 characters (for the sake of the example; we use UTF-8 these days)
*)
let validate_some_text s =
 s <> "" &&
 try
 String.iter (fun c -> if not (ascii_printable c) then raise Exit) s;
 true
 with Exit ->
 false

(*
 Check that the combination of year, month and day exists in the
 Gregorian calendar.
*)
let validate_date x =
 let y = x.year in
 let m = x.month in
 let d = x.day in
 m >= 1 && m <= 12 && d >= 1 &&
 (let dmax =
 match m with
 2 ->
 if y mod 4 = 0 && not (y mod 100 = 0) || y mod 400 = 0 then 29
 else 28
 | 1 | 3 | 5 | 7 | 8 | 10 | 12 -> 31
 | _ -> 30
 in
 d <= dmax)

(* Compare dates chronologically *)
let compare_date a b =
 let c = compare a.year b.year in
 if c <> 0 then c
 else
 let c = compare a.month b.month in
 if c <> 0 then c
 else compare a.day b.day

(* Check that the end_date, when defined, is not earlier than the start_date *)
let validate_job x =
 match x.end_date with
 None -> true
 | Some end_date ->
 compare_date x.start_date end_date <= 0

After we call atdgen -v resume.atd, the module Resume_v will be
generated in resume_v.ml, providing the function
validate_work_experience . We can then use this function, along with the
generated Resume_j in the following program written in resume.ml:

let check_experience x =
 let is_valid = match Resume_v.validate_work_experience [] x with
 | None -> false
 | _ -> true
 in
 Printf.printf "%s:\n%s\n"
 (if is_valid then "VALID" else "INVALID")
 (Yojson.Safe.prettify (Resume_j.string_of_work_experience x))

let () =
 (* one valid date *)
 let valid = { Resume_t.year = 2000; month = 2; day = 29 } in
 (* one invalid date *)
 let invalid = { Resume_t.year = 1900; month = 0; day = 0 } in
 (* two more valid dates, created with Resume_v.create_date *)
 let date1 = { Resume_t.year = 2005; month = 8; day = 1 } in
 let date2 = { Resume_t.year = 2006; month = 3; day = 22 } in

 let job = {
 Resume_t.company = "Acme Corp.";
 title = "Tester";
 start_date = date1;
 end_date = Some date2;
 }
 in
 let valid_job = { job with Resume_t.start_date = valid } in
 let invalid_job = { job with Resume_t.end_date = Some invalid } in
 let valid_experience = [job; valid_job] in
 let invalid_experience = [job; invalid_job] in
 check_experience valid_experience;
 check_experience invalid_experience

Output:

VALID:
[
 {
 "company": "Acme Corp.",
 "title": "Tester",
 "start_date": { "year": 2005, "month": 8, "day": 1 },
 "end_date": { "year": 2006, "month": 3, "day": 22 }
 },
 {
 "company": "Acme Corp.",
 "title": "Tester",
 "start_date": { "year": 2000, "month": 2, "day": 29 },
 "end_date": { "year": 2006, "month": 3, "day": 22 }
 }
]
INVALID:
[
 {
 "company": "Acme Corp.",
 "title": "Tester",
 "start_date": { "year": 2005, "month": 8, "day": 1 },
 "end_date": { "year": 2006, "month": 3, "day": 22 }
 },
 {
 "company": "Acme Corp.",
 "title": "Tester",
 "start_date": { "year": 2005, "month": 8, "day": 1 },
 "end_date": { "year": 1900, "month": 0, "day": 0 }
 }

Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/validate]

Modularity: referring to type definitions from another ATD file

It is possible to define types that depend on types defined in other .atd
files. The example below is self-explanatory.

part1.atd:

type t = { x : int; y : int }

part2.atd:

type t1 <ocaml from="Part1" t="t"> = abstract
 (*
 Imports type t defined in file part1.atd.
 The local name is t1. Because the local name (t1) is different from the
 original name (t), we must specify the original name using t=.
 *)

type t2 = t1 list

part3.atd:

type t2 <ocaml from="Part2"> = abstract

type t3 = {
 name : string;
 ?data : t2 option;
}

main.ml:

let v = {
 Part3_t.name = "foo";
 data = Some [
 { Part1_t.x = 1; y = 2 };
 { Part1_t.x = 3; y = 4 };
]
}

let () =
 Atdgen_runtime.Util.Json.to_channel Part3_j.write_t3 stdout v;
 print_newline ()

Output:

{"name":"foo","data":[{"x":1,"y":2},{"x":3,"y":4}]}

Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/modularity]

Managing JSON configuration files

JSON makes a good format for configuration files because it is human-readable,
easy to modify programmatically and widespread. Here is an example of how to use
atdgen to manage config files.

	Specifying defaults is done in the .atd file. See section [Optional fields
and default values] for details on how to do that.

	Auto-generating a template config file with default values: a sample value
in the OCaml world needs to be created but only fields without default need to
be specified.

	Describing the format is achieved by embedding the .atd type definitions
in the OCaml program and printing it out on request.

	Loading a config file and reporting illegal fields is achieved using the
JSON deserializers produced by atdgen -j. Option -j-strict-fields
ensures the misspelled field names are not ignored but reported as errors.

	Reindenting a config file is achieved by the pretty-printing function
Yojson.Safe.prettify that takes a JSON string and returns an equivalent
JSON string.

	Showing implicit (default) settings is achieved by passing the
-j-defaults option to atdgen. The OCaml config data is then serialized
into JSON containing all fields, including those whose value is the default.

The example uses the following type definitions:

type config = {
 title : string;
 ?description : string option;
 ~timeout <ocaml default="10"> : int;
 ~credentials : param list
 <ocaml valid="fun l ->
 l <> [] || failwith \"missing credentials\"">;
}

type param = {
 name : string
 <ocaml valid="fun s -> s <> \"\"">;
 key : string
 <ocaml valid="fun s -> String.length s = 16">;
}

Our program will perform the following actions:

$./config -template
{
 "title": "",
 "timeout": 10,
 "credentials": [{ "name": "foo", "key": "0123456789abcdef" }]
}

$./config -format
type config = {
 title : string;
 ?description : string option;
 ~timeout <ocaml default="10"> : int;
 ~credentials : param list
 <ocaml valid="fun l ->
 l <> [] || failwith \"missing credentials\"">;
}

type param = {
 name : string
 <ocaml valid="fun s -> s <> \"\"">;
 key : string
 <ocaml valid="fun s -> String.length s = 16">;
}

$ cat sample-config.json
{
 "title": "Example",
 "credentials": [
 {
 "name": "joeuser",
 "key": "db7c0877bdef3016"
 },
 {
 "name": "tester",
 "key": "09871ff387ac2b10"
 }
]
}

$./config -validate sample-config.json
{
 "title": "Example",
 "timeout": 10,
 "credentials": [
 { "name": "joeuser", "key": "db7c0877bdef3016" },
 { "name": "tester", "key": "09871ff387ac2b10" }
]
}

This is our demo.sh script that builds and runs our example
program called config:

#! /bin/sh -e

set -x

Embed the contents of the .atd file into our OCaml program
echo 'let contents = "\' > config_atd.ml
sed -e 's/\([\\"]\)/\\\1/g' config.atd >> config_atd.ml
echo '"' >> config_atd.ml

Derive OCaml type definitions from .atd file
atdgen -t config.atd

Derive JSON-related functions from .atd file
atdgen -j -j-defaults -j-strict-fields config.atd

Derive validator from .atd file
atdgen -v config.atd

Compile the OCaml program
ocamlfind ocamlopt -o config \
 config_t.mli config_t.ml config_j.mli config_j.ml config_v.mli config_v.ml \
 config_atd.ml config.ml -package atdgen -linkpkg

Output a sample config
./config -template

Print the original type definitions
./config -format

Fail to validate an invalid config file
./config -validate bad-config1.json || :

Fail to validate another invalid config file (using custom validators)
./config -validate bad-config3.json || :

Validate, inject missing defaults and pretty-print
./config -validate sample-config.json

This is the hand-written OCaml program. It can be used as a start
point for a real-world program using a JSON config file:

open Printf

let param_template =
 (* Sample item used to populate the template config file *)
 {
 Config_v.name = "foo";
 key = "0123456789abcdef"
 }

let config_template =
 (*
 Records can be conveniently created using functions generated by
 "atdgen -v".
 Here we use Config_v.create_config to create a record of type
 Config_t.config. The big advantage over creating the record
 directly using the record notation {...} is that we don't have to
 specify default values (such as timeout in this example).
 *)
 Config_v.create_config ~title:"" ~credentials: [param_template] ()

let make_json_template () =
 (* Thanks to the -j-defaults flag passed to atdgen, even default
 fields will be printed out *)
 let compact_json = Config_j.string_of_config config_template in
 Yojson.Safe.prettify compact_json

let print_template () =
 print_endline (make_json_template ())

let print_format () =
 print_string Config_atd.contents

let validate fname =
 let x =
 try
 (* Read config data structure from JSON file *)
 let x = Atdgen_runtime.Util.Json.from_file Config_j.read_config fname in
 (* Call the validators specified by <ocaml valid=...> *)
 if not (Config_v.validate_config x) then
 failwith "Some fields are invalid"
 else
 x
 with e ->
 (* Print decent error message and exit *)
 let msg =
 match e with
 Failure s
 | Yojson.Json_error s -> s
 | e -> Printexc.to_string e
 in
 eprintf "Error: %s\n%!" msg;
 exit 1
 in
 (* Convert config to compact JSON and pretty-print it.
 ~std:true means that the output will not use extended syntax for
 variants and tuples but only standard JSON. *)
 let json = Yojson.Safe.prettify ~std:true (Config_j.string_of_config x) in
 print_endline json

type action = Template | Format | Validate of string

let main () =
 let action = ref Template in
 let options = [
 "-template", Arg.Unit (fun () -> action := Template),
 "
 prints a sample configuration file";

 "-format", Arg.Unit (fun () -> action := Format),
 "
 prints the format specification of the config files (atd format)";

 "-validate", Arg.String (fun s -> action := Validate s),
 "<CONFIG FILE>
 reads a config file, validates it, adds default values
 and prints the config nicely to stdout";
]
 in
 let usage_msg = sprintf "\
Usage: %s [-template|-format|-validate ...]
Demonstration of how to manage JSON configuration files with atdgen.
"
 Sys.argv.(0)
 in
 let anon_fun s = eprintf "Invalid command parameter %S\n%!" s; exit 1 in
 Arg.parse options anon_fun usage_msg;

 match !action with
 Template -> print_template ()
 | Format -> print_format ()
 | Validate s -> validate s

let () = main ()

The full source code for this section with examples can be inspected
and downloaded here [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/config-file].

Integration with ocamldoc

Ocamldoc is a tool that comes with the core OCaml distribution.
It uses comments within (** and *) to produce
hyperlinked documentation (HTML) of module signatures.

Atdgen can produce .mli files with comments in the syntax supported by
ocamldoc but regular ATD comments within (* and *)
are always discarded
by atdgen. Instead, <doc text=”…”> must be used and placed after the
element they describe. The contents of the text field must be UTF8-encoded.

type point = {
 x : float;
 y : float;
 ~z
 <doc text="Optional depth, its default value is {{0.0}}.">
 : float;
}
 <doc text="Point with optional 3rd dimension.

OCaml example:
{{{
let p =
 { x = 0.5; y = 1.0; z = 0. }
}}}
">

is converted into the following .mli file with
ocamldoc-compatible comments:

(**
 Point with optional 3rd dimension.

 OCaml example:

{v
let p =
 \{ x = 0.5; y = 1.0; z = 0. \}
v}
*)
type point = {
 x: float;
 y: float;
 z: float (** Optional depth, its default value is [0.0]. *)
}

The only two forms of markup supported by <doc text="..."> are {{ …
}} for inline code and {{{ … }}} for a block of preformatted code.

Integration with build systems

OMake

We provide an Atdgen plugin [https://github.com/mjambon/atdgen-omake] for
OMake [http://omake.metaprl.org]. It simplifies the compilation rules to a
minimum.

The plugin consists of a self-documented file to copy into a project’s root. The
following is a sample OMakefile for a project using JSON and five source
files (foo.atd, foo.ml, bar.atd, bar.ml and main.ml):

require file Atdgen.om
include Atdgen

OCaml modules we want to build
OCAMLFILES = foo_t foo_j foo bar_t bar_j bar main

Atdgen(foo bar, -j-std)
OCamlProgram(foobar, $(OCAMLFILES))

.DEFAULT: foobar.opt

.PHONY: clean
clean:
 rm -f *.cm[ioxa] *.cmx[as] *.[oa] *.opt *.run *~
 rm -f $(ATDGEN_OUTFILES)

Running omake builds the native code executable foobar.opt.

omake clean removes all the products of compilation including the .mli
and .ml produced by atdgen.

GNU Make

We provide Atdgen.mk [https://github.com/mjambon/atdgen-make], a generic
makefile that defines the dependencies and rules for generating OCaml .mli and
.ml files from .atd files containing type definitions. The Atdgen.mk file
contains its own documentation.

Here is a sample Makefile that takes advantage of
OCamlMakefile [http://mmottl.github.io/ocaml-makefile/]:

.PHONY: default
default: opt

ATDGEN_SOURCES = foo.atd bar.atd
ATDGEN_FLAGS = -j-std
include Atdgen.mk

SOURCES = \
 foo_t.mli foo_t.ml foo_j.mli foo_j.ml \
 bar_t.mli bar_t.ml bar_j.mli bar_j.ml \
 hello.ml
RESULT = hello
PACKS = atdgen
"include OCamlMakefile" must come after defs for SOURCES, RESULT, PACKS, etc.
include OCamlMakefile

.PHONY: sources opt all
sources: $(SOURCES)
opt: sources
 $(MAKE) native-code
all: sources
 $(MAKE) byte-code

make alone builds a native code executable from source files foo.atd,
bar.atd and hello.ml. make clean removes generated files. make
all builds a bytecode executable.

In addition to native-code, byte-code and clean, OCamlMakefile
provides a number of other targets and options which are documented in
OCamlMakefile’s README.

Ocamlbuild

There is an atdgen plugin for ocamlbuild [https://github.com/hcarty/ocamlbuild-plugins/blob/master/myatdgen.ml].

Dune (formerly jbuilder)

Dune currently needs atdgen build rules specified manually. Given an example.atd,
this will usually look like:

(rule
 (targets example_j.ml
 example_j.mli)
 (deps example.atd)
 (action (run atdgen -j -j-std %{deps})))

(rule
 (targets example_t.ml
 example_t.mli)
 (deps example.atd)
 (action (run atdgen -t %{deps})))

You can refer to example_t.ml and example_j.ml as usual (by default, they
will be automatically linked into the library being built in the same directory).
You will need to write rules for each .atd file individually until
Dune supports wildcard rules [https://github.com/ocaml/dune/issues/307].

Note that any options atdgen supports can be included in the run atdgen
section (-open, -deriving-conv, etc.).

Dealing with untypable JSON

Sometimes we have to deal with JSON data that cannot be described
using type definitions. In such case, we can represent the data as its
JSON abstract syntax tree (AST), which lets the user inspect it at runtime.

Let’s consider a list of JSON objects for which we don’t know the type
definitions, but somehow some other system knows how to deal with such
data. Here is such data:

[
 {
 "label": "flower",
 "value": {
 "petals": [12, 45, 83.5555],
 "water": "a340bcf02e"
 }
 },
 {
 "label": "flower",
 "value": {
 "petals": "undefined",
 "fold": null,
 "water": 0
 }
 },
 { "labels": ["fork", "scissors"],
 "value": [8, 8]
 }
]

Hopefully this means something for someone. We are going to assume that each
object has a value field of an unknown type, and may have a field label
or a field labels of type string:

(* File untypable.atd *)

type obj_list = obj list

type obj = {
 ?label: string option;
 ?labels: string list option;
 value: abstract (* requires ATD >= 2.6.0 *)
}

Until ATD 2.5, abstract could not be used as freely and would not
stand for raw JSON by default. One had to write a dedicated type
definition as shown below:

(* File untypable.atd *)

(* deprecated since ATD 2.6 *)
type json <ocaml module="Yojson.Safe"> = abstract
 (* uses type Yojson.Safe.t,
 with the functions Yojson.Safe.write_json
 and Yojson.Safe.read_json *)

type obj_list = obj list

type obj = {
 ?label: string option;
 ?labels: string list option;
 value: json
}

It is possible to give a different name than json to the type of the JSON
AST, but then the name of the type used in the original module must be provided
in the annotation, i.e.:

(* deprecated since ATD 2.6 *)
type raw_json <ocaml module="Yojson.Safe" t="json"> = abstract
 (* uses type Yojson.Safe.t,
 with the functions Yojson.Safe.write_json
 and Yojson.Safe.read_json *)

type obj_list = obj list

type obj = {
 ?label: string option;
 ?labels: string list option;
 value: raw_json
}

Compile either example with:

$ atdgen -t untypable.atd
$ atdgen -j -j-std untypable.atd
$ ocamlfind ocamlc -a -o untypable.cma -package atdgen \
 untypable_t.mli untypable_t.ml untypable_j.mli untypable_j.ml

Test the example with your favorite OCaml toplevel (ocaml or utop):

#use "topfind";;
#require "atdgen";;
#load "untypable.cma";;
Atdgen_runtime.Util.Json.from_channel Untypable_j.read_obj_list stdin;;
[
 {
 "label": "flower",
 "value": {
 "petals": [12, 45, 83.5555],
 "water": "a340bcf02e"
 }
 },
 {
 "label": "flower",
 "value": {
 "petals": "undefined",
 "fold": null,
 "water": 0
 }
 },
 { "labels": ["fork", "scissors"],
 "value": [8, 8]
 }
]
- : Untypable_t.obj_list =
[{Untypable_t.label = Some "flower"; labels = None;
 value =
 `Assoc
 [("petals", `List [`Int 12; `Int 45; `Float 83.5555]);
 ("water", `String "a340bcf02e")]};
{Untypable_t.label = Some "flower"; labels = None;
 value =
 `Assoc [("petals", `String "undefined");
 ("fold", `Null);
 ("water", `Int 0)]};
{Untypable_t.label = None; labels = Some ["fork"; "scissors"];
 value = `List [`Int 8; `Int 8]}]

Atdgen reference

Description

Atdgen is a command-line program that takes as input type definitions in
the ATD syntax and produces OCaml code
suitable for data serialization and deserialization.

Two data formats are currently supported, these are
JSON [http://json.org/] and
biniou [https://github.com/ocaml-community/biniou], a binary format with
extensibility properties similar to JSON. Atdgen-json and Atdgen-biniou
will refer to Atdgen used in one context or the other.

Atdgen was designed with efficiency and durability in mind. Software
authors are encouraged to use Atdgen directly and to write tools that
may reuse part of Atdgen’s source code.

Atdgen uses the following packages that were developed in conjunction
with Atdgen:

	atd: parser for the syntax of type definitions

	biniou: parser and printer for biniou, a binary extensible data
format

	`yojson <https://github.com/ocaml-community/yojson>`__: parser
and printer for JSON, a widespread text-based data format

Command-line usage

Command-line help

Call atdgen -help for the full list of available options.

Atdgen-json example

$ atdgen -t example.atd
$ atdgen -j -j-std example.atd

Input file example.atd:

type profile = {
 id : string;
 email : string;
 ~email_validated : bool;
 name : string;
 ?real_name : string option;
 ~about_me : string list;
 ?gender : gender option;
 ?date_of_birth : date option;
}

type gender = [Female | Male]

type date = {
 year : int;
 month : int;
 day : int;
}

is used to produce files example_t.mli, example_t.ml,
example_j.mli and example_j.ml. This is example_j.mli:

(* Auto-generated from "example.atd" *)

type gender = Example_t.gender

type date = Example_t.date = { year: int; month: int; day: int }

type profile = Example_t.profile = {
 id: string;
 email: string;
 email_validated: bool;
 name: string;
 real_name: string option;
 about_me: string list;
 gender: gender option;
 date_of_birth: date option
}

val write_gender :
 Bi_outbuf.t -> gender -> unit
 (** Output a JSON value of type {!gender}. *)

val string_of_gender :
 ?len:int -> gender -> string
 (** Serialize a value of type {!gender}
 into a JSON string.
 @param len specifies the initial length
 of the buffer used internally.
 Default: 1024. *)

val read_gender :
 Yojson.Safe.lexer_state -> Lexing.lexbuf -> gender
 (** Input JSON data of type {!gender}. *)

val gender_of_string :
 string -> gender
 (** Deserialize JSON data of type {!gender}. *)

val write_date :
 Bi_outbuf.t -> date -> unit
 (** Output a JSON value of type {!date}. *)

val string_of_date :
 ?len:int -> date -> string
 (** Serialize a value of type {!date}
 into a JSON string.
 @param len specifies the initial length
 of the buffer used internally.
 Default: 1024. *)

val read_date :
 Yojson.Safe.lexer_state -> Lexing.lexbuf -> date
 (** Input JSON data of type {!date}. *)

val date_of_string :
 string -> date
 (** Deserialize JSON data of type {!date}. *)

val write_profile :
 Bi_outbuf.t -> profile -> unit
 (** Output a JSON value of type {!profile}. *)

val string_of_profile :
 ?len:int -> profile -> string
 (** Serialize a value of type {!profile}
 into a JSON string.
 @param len specifies the initial length
 of the buffer used internally.
 Default: 1024. *)

val read_profile :
 Yojson.Safe.lexer_state -> Lexing.lexbuf -> profile
 (** Input JSON data of type {!profile}. *)

val profile_of_string :
 string -> profile
 (** Deserialize JSON data of type {!profile}. *)

Module Example_t (files example_t.mli and example_t.ml)
contains all OCaml type definitions that can be used independently from
Biniou or JSON.

For convenience, these definitions are also made available from the
Example_j module whose interface is shown above. Any type name,
record field name or variant constructor can be referred to using either
module. For example, the OCaml expressions
((x : Example_t.date) : Example_j.date) and
x.Example_t.year = x.Example_j.year are both valid.

Atdgen-biniou example

$ atdgen -t example.atd
$ atdgen -b example.atd

Input file example.atd:

type profile = {
 id : string;
 email : string;
 ~email_validated : bool;
 name : string;
 ?real_name : string option;
 ~about_me : string list;
 ?gender : gender option;
 ?date_of_birth : date option;
}

type gender = [Female | Male]

type date = {
 year : int;
 month : int;
 day : int;
}

is used to produce files example_t.mli, example_t.ml,
example_b.mli and example_b.ml.

This is example_b.mli:

(* Auto-generated from "example.atd" *)

type gender = Example_t.gender

type date = Example_t.date = { year: int; month: int; day: int }

type profile = Example_t.profile = {
 id: string;
 email: string;
 email_validated: bool;
 name: string;
 real_name: string option;
 about_me: string list;
 gender: gender option;
 date_of_birth: date option
}

(* Writers for type gender *)

val gender_tag : Bi_io.node_tag
 (** Tag used by the writers for type {!gender}.
 Readers may support more than just this tag. *)

val write_untagged_gender :
 Bi_outbuf.t -> gender -> unit
 (** Output an untagged biniou value of type {!gender}. *)

val write_gender :
 Bi_outbuf.t -> gender -> unit
 (** Output a biniou value of type {!gender}. *)

val string_of_gender :
 ?len:int -> gender -> string
 (** Serialize a value of type {!gender} into
 a biniou string. *)

(* Readers for type gender *)

val get_gender_reader :
 Bi_io.node_tag -> (Bi_inbuf.t -> gender)
 (** Return a function that reads an untagged
 biniou value of type {!gender}. *)

val read_gender :
 Bi_inbuf.t -> gender
 (** Input a tagged biniou value of type {!gender}. *)

val gender_of_string :
 ?pos:int -> string -> gender
 (** Deserialize a biniou value of type {!gender}.
 @param pos specifies the position where
 reading starts. Default: 0. *)

(* Writers for type date *)

val date_tag : Bi_io.node_tag
 (** Tag used by the writers for type {!date}.
 Readers may support more than just this tag. *)

val write_untagged_date :
 Bi_outbuf.t -> date -> unit
 (** Output an untagged biniou value of type {!date}. *)

val write_date :
 Bi_outbuf.t -> date -> unit
 (** Output a biniou value of type {!date}. *)

val string_of_date :
 ?len:int -> date -> string
 (** Serialize a value of type {!date} into
 a biniou string. *)

(* Readers for type date *)

val get_date_reader :
 Bi_io.node_tag -> (Bi_inbuf.t -> date)
 (** Return a function that reads an untagged
 biniou value of type {!date}. *)

val read_date :
 Bi_inbuf.t -> date
 (** Input a tagged biniou value of type {!date}. *)

val date_of_string :
 ?pos:int -> string -> date
 (** Deserialize a biniou value of type {!date}.
 @param pos specifies the position where
 reading starts. Default: 0. *)

(* Writers for type profile *)

val profile_tag : Bi_io.node_tag
 (** Tag used by the writers for type {!profile}.
 Readers may support more than just this tag. *)

val write_untagged_profile :
 Bi_outbuf.t -> profile -> unit
 (** Output an untagged biniou value of type {!profile}. *)

val write_profile :
 Bi_outbuf.t -> profile -> unit
 (** Output a biniou value of type {!profile}. *)

val string_of_profile :
 ?len:int -> profile -> string
 (** Serialize a value of type {!profile} into
 a biniou string. *)

(* Readers for type profile *)

val get_profile_reader :
 Bi_io.node_tag -> (Bi_inbuf.t -> profile)
 (** Return a function that reads an untagged
 biniou value of type {!profile}. *)

val read_profile :
 Bi_inbuf.t -> profile
 (** Input a tagged biniou value of type {!profile}. *)

val profile_of_string :
 ?pos:int -> string -> profile
 (** Deserialize a biniou value of type {!profile}.
 @param pos specifies the position where
 reading starts. Default: 0. *)

Module Example_t (files example_t.mli and example_t.ml)
contains all OCaml type definitions that can be used independently from
Biniou or JSON.

For convenience, these definitions are also made available from the
Example_b module whose interface is shown above. Any type name,
record field name or variant constructor can be referred to using either
module. For example, the OCaml expressions
((x : Example_t.date) : Example_b.date) and
x.Example_t.year = x.Example_b.year are both valid.

Validator example

$ atdgen -t example.atd
$ atdgen -v example.atd

Input file example.atd:

type month = int <ocaml valid="fun x -> x >= 1 && x <= 12">
type day = int <ocaml valid="fun x -> x >= 1 && x <= 31">

type date = {
 year : int;
 month : month;
 day : day;
}
 <ocaml validator="Date_util.validate_date">

is used to produce files example_t.mli, example_t.ml,
example_v.mli and example_v.ml. This is example_v.ml,
showing how the user-specified validators are used:

(* Auto-generated from "example.atd" *)

type gender = Example_t.gender

type date = Example_t.date = { year: int; month: int; day: int }

type profile = Example_t.profile = {
 id: string;
 email: string;
 email_validated: bool;
 name: string;
 real_name: string option;
 about_me: string list;
 gender: gender option;
 date_of_birth: date option
}

val validate_gender :
 Atdgen_runtime.Util.Validation.path -> gender -> Atdgen_runtime.Util.Validation.error option
 (** Validate a value of type {!gender}. *)

val create_date :
 year: int ->
 month: int ->
 day: int ->
 unit -> date
 (** Create a record of type {!date}. *)

val validate_date :
 Atdgen_runtime.Util.Validation.path -> date -> Atdgen_runtime.Util.Validation.error option
 (** Validate a value of type {!date}. *)

val create_profile :
 id: string ->
 email: string ->
 ?email_validated: bool ->
 name: string ->
 ?real_name: string ->
 ?about_me: string list ->
 ?gender: gender ->
 ?date_of_birth: date ->
 unit -> profile
 (** Create a record of type {!profile}. *)

val validate_profile :
 Atdgen_runtime.Util.Validation.path -> profile -> Atdgen_runtime.Util.Validation.error option
 (** Validate a value of type {!profile}. *)

Default type mapping

The following table summarizes the default mapping between ATD types and
OCaml, biniou and JSON data types. For each language more
representations are available and are detailed in the next section of
this manual.

	ATD

	OCaml

	JSON

	Biniou

	unit

	unit

	null

	unit

	bool

	bool

	boolean

	bool

	int

	int

	-?(0|[1-9][0-9]*)

	svint

	float

	float

	number

	float64

	string

	string

	string

	string

	'a option

	'a option

	"None" or
["Some", ...]

	numeric variants
(tag 0)

	'a nullable

	'a option

	null or
representation of
'a

	numeric variants
(tag 0)

	'a list

	'a list

	array

	array

	'a shared

	no wrapping

	not implemented

	no longer
supported

	'a wrap

	defined by
annotation,
converted from
'a

	representation of
'a

	representation of
'a

	variants

	polymorphic
variants

	variants

	regular variants

	record

	record

	object

	record

	('a * 'b)

	('a * 'b)

	array

	tuple

	('a)

	'a

	array

	tuple

Notes:

	Null JSON fields by default are treated as if the field was missing.
They can be made meaningful with the keep_nulls flag.

	JSON nulls are used to represent the unit value and is useful for
instanciating parametrized types with “nothing”.

	OCaml floats are written to JSON numbers with either a decimal point
or an exponent such that they are distinguishable from ints, even
though the JSON standard does not require a distinction between the
two.

	The optional values of record fields denoted in ATD by a question
mark are unwrapped or omitted in both biniou and JSON.

	JSON option values and JSON variants are represented in standard JSON
(atdgen -j -j-std) by a single string e.g. "None" or a pair
in which the first element is the name (constructor) e.g.
["Some", 1234]. Yojson also provides a specific syntax for
variants using edgy brackets: <"None">, <"Some": 1234>.

	Biniou field names and variant names other than the option types use
the hash of the ATD field or variant name and cannot currently be
overridden by annotations.

	JSON tuples in standard JSON (atdgen -j -j-std) use the array
notation e.g. ["ABC", 123]. Yojson also provides a specific
syntax for tuples using parentheses, e.g. ("ABC", 123).

	Types defined as abstract are defined in another module.

ATD Annotations

Section json

Field keep_nulls

Position: after record

Values: none, true or false

Semantics: this flag, if present or set to true, indicates that fields
whose JSON value is null should not be treated as if they were
missing. In this case, null is parsed as a normal value, possibly of
a nullable type.

Example: patch semantics

(* Type of the objects stored in our database *)
type t = {
 ?x : int option;
 ?y : int option;
 ?z : int option;
}

(* Type of the requests to modify some of the fields of an object. *)
type t_patch = {
 ?x : int nullable option; (* OCaml type: int option option *)
 ?y : int nullable option;
 ?z : int nullable option;
} <ocaml field_prefix="patch_"> <json keep_nulls>

Let’s consider the following json patch that means “set x to 1,
clear y and keep z as it is”:

{
 "x": 1,
 "y": null
}

It will be parsed by the generated function t_patch_of_string into
the following OCaml value:

{
 patch_x = Some (Some 1);
 patch_y = Some None;
 patch_z = None;
}

Then presumably some code would be written to apply the patch to an
object of type t. Such code is not generated by atdgen at this time.

Available: from atd 1.12

Field name

Position: after field name or variant name

Values: any string making a valid JSON string value

Semantics: specifies an alternate object field name or variant name to
be used by the JSON representation.

Example:

type color = [
 Black <json name="black">
 | White <json name="white">
 | Grey <json name="grey">
]

type profile = {
 id <json name="ID"> : int;
 username : string;
 background_color : color;
}

A valid JSON object of the profile type above is:

{
 "ID": 12345678,
 "username": "kimforever",
 "background_color": "black"
}

Field repr

Association lists

Position: after (string * _) list type

Values: object

Semantics: uses JSON’s object notation to represent association lists.

Example:

type counts = (string * int) list <json repr="object">

A valid JSON object of the counts type above is:

{
 "bob": 3,
 "john": 1408,
 "mary": 450987,
 "peter": 93087
}

Without the annotation <json repr="object">, the data above would be
represented as:

[
 ["bob", 3],
 ["john", 1408],
 ["mary", 450987],
 ["peter", 93087]
]

Floats

Position: after float type

Values: int

Semantics: specifies a float value that must be rounded to the nearest
integer and represented in JSON without a decimal point nor an exponent.

Example:

type unixtime = float <json repr="int">

Ints

Position: after int type

Values: string

Semantics: specifies a int value that must be represented in JSON as
a string.

Example:

type int64 = int <ocaml repr="int64"> <json repr="string">

Field tag_field

Superseded by <json adapter.ocaml="...">. Available since atdgen
1.5.0 and yojson 1.2.0 until atdgen 1.13.

This feature makes it possible to read JSON objects representing
variants that use one field for the tag and another field for the
untagged value of the specific type associated with that tag.

Position: on a record field name, for a field holding a variant type.

Value: name of another JSON field which holds the string representing
the constructor for the variant.

Semantics: The type definition

type t = {
 value <json tag_field="kind">: [A | B <json name="b"> of int];
}

covers JSON objects that have an extra field kind which holds either
"A" or "b". Valid JSON values of type t include
{ "kind": "A" } and { "kind": "b", "value": 123 }.

Field untyped

Superseded by <json open_enum> and <json adapter.ocaml="...">.
Available since atdgen 1.10.0 and atd 1.2.0 until atdgen 1.13.

This flag enables parsing of arbitrary variants without prior knowledge
of their type. It is useful for constructing flexible parsers for
extensible serializations. json untyped is compatible with regular
variants, json tag_field variants, default values, and implicit
tag_field constructors.

Position: on a variant constructor with argument type
string * json option (at most one per variant type)

Value: none, true or false

Semantics: The type definition

type v = [
 | A
 | B <json name="b"> of int
 | Unknown <json untyped> of (string * json option)
]

will parse and print "A", ["b", 0], "foo", and
["bar", [null]] in a regular variant context. In the tag_field
type t context in the previous section, v will parse and print
{ "kind": "foo" } and { "kind": "bar", "value": [null] } as well
as the examples previously given.

Field open_enum

Where an enum (finite set of strings) is expected, this flag allows
unexpected strings to be kept under a catch-all constructor rather than
producing an error.

Position: on a variant type comprising exactly one constructor with an
argument. The type of that argument must be string. All other
constructors must have no arguments.

Value: none

For example:

type language = [
 | English
 | Chinese
 | Other of string
] <json open_enum>

maps the json string "Chinese" to the OCaml value `Chinese and
maps "French" to `Other "French".

Available since atdgen 2.0.

Field adapter.ocaml

Json adapters are a mechanism for rearranging json data on-the-fly, so
as to make them compatible with ATD. The programmer must provide an
OCaml module that provides converters between the original json
representation and the ATD-compatible representation. The signature of
the user-provided module must be equal to
Atdgen_runtime.Json_adapter.S, which is:

sig
 (** Convert from original json to ATD-compatible json *)
 val normalize : Yojson.Safe.t -> Yojson.Safe.t

 (** Convert from ATD-compatible json to original json *)
 val restore : Yojson.Safe.t -> Yojson.Safe.t
end

The type Yojson.Safe.t is the type of parsed JSON as provided by
the yojson library.

Position: on a variant type or on a record type.

Value: an OCaml module identifier. Note that
Atdgen_runtime.Json_adapter provides a few modules and functors that
are ready to use. Users are however encouraged to write their own to
suit their needs.

Sample ATD definitions:

type document = [
 | Image of image
 | Text of text
] <json adapter.ocaml="Atdgen_runtime.Json_adapter.Type_field">

type image = {
 url: string;
}

type text = {
 title: string;
 body: string;
}

ATD-compliant json values:

	["Image", {"url": "https://example.com/ocean123.jpg"}]

	["Text", {"title": "Cheeses Around the World", "body": "..."}]

Corresponding json values given by some API:

	{"type": "Image", "url": "https://example.com/ocean123.jpg"}

	{"type": "Text", "title": "Cheeses Around the World", "body": "..."}

The json adapter Type_field that ships with the atdgen runtime takes
care of converting between these two forms. For information on how to
write your own adapter, please consult the documentation for the yojson
library.

Fields adapter.to_ocaml and adapter.from_ocaml

This is an alternative form of specifying adapter.ocaml. It permits to
specify arbitrary code and doesn’t require the “adapter” module to be defined
in advance.

For example, the above usage of adapter.ocaml can be rewritten as
following:

type document = [
 | Image of image
 | Text of text
]
<json
 adapter.to_ocaml="Atdgen_runtime.Json_adapter.normalize_type_field \"type\""
 adapter.from_ocaml="Atdgen_runtime.Json_adapter.restore_type_field \"type\""
>

type image = {
 url: string;
}

type text = {
 title: string;
 body: string;
}

Section biniou

Field repr

Integers

Position: after int type

Values: svint (default), uvint, int8, int16, int32,
int64

Semantics: specifies an alternate type for representing integers. The
default type is svint. The other integers types provided by biniou
are supported by Atdgen-biniou. They have to map to the corresponding
OCaml types in accordance with the following table:

	Biniou type

	Supported OCaml type

	OCaml value range

	svint

	int

	min_int … max_int

	uvint

	int

	0 … max_int, min_int … -1

	int8

	char

	'\000 … '\255

	int16

	int

	0 … 65535

	int32

	int32

	Int32.min_int …
Int32.max_int

	int64

	int64

	Int64.min_int …
Int64.max_int

In addition to the mapping above, if the OCaml type is int, any
biniou integer type can be read into OCaml data regardless of the
declared biniou type.

Example:

type t = {
 id : int
 <ocaml repr="int64">
 <biniou repr="int64">;
 data : string list;
}

Floating-point numbers

Position: after float type

Values: float64 (default), float32

Semantics: float32 allows for a shorter serialized representation of
floats, using 4 bytes instead of 8, with reduced precision. OCaml floats
always use 8 bytes, though.

Example:

type t = {
 lat : float <biniou repr="float32">;
 lon : float <biniou repr="float32">;
}

Arrays and tables

Position: applies to lists of records

Values: array (default), table

Semantics: table uses biniou’s table format instead of a regular
array for serializing OCaml data into biniou. Both formats are supported
for reading into OCaml data regardless of the annotation. The table
format allows

Example:

type item = {
 id : int;
 data : string list;
}

type items = item list <biniou repr="table">

Section ocaml

Field attr

Position: on a type definition, i.e. on the left-handside just before
the equal sign =

Semantics: specifies custom ppx attributes for the type
definition. Overrides any default attributes set globally via
the command line option -type-attr.

Values: the contents of a ppx annotation without the enclosing
[@@ and]

Example:

type foo <ocaml attr="deriving show,eq"> = int list

translates to

type foo = int list [@@deriving show,eq]

Field predef

Position: left-hand side of a type definition, after the type name

Values: none, true or false

Semantics: this flag indicates that the corresponding OCaml type
definition must be omitted.

Example:

(* Some third-party OCaml code *)
type message = {
 from : string;
 subject : string;
 body : string;
}

(*
 Our own ATD file used for making message_of_string and
 string_of_message functions.
*)
type message <ocaml predef> = {
 from : string;
 subject : string;
 body : string;
}

Field mutable

Position: after a record field name

Values: none, true or false

Semantics: this flag indicates that the corresponding OCaml record field
is mutable.

Example:

type counter = {
 total <ocaml mutable> : int;
 errors <ocaml mutable> : int;
}

translates to the following OCaml definition:

type counter = {
 mutable total : int;
 mutable errors : int;
}

Field default

Position: after a record field name marked with a \~{} symbol or at
the beginning of a tuple field.

Values: any valid OCaml expression

Semantics: specifies an explicit default value for a field of an OCaml
record or tuple, allowing that field to be omitted. Default strings must
be escaped.

Example:

type color = [Black | White | Rgb of (int * int * int)]

type ford_t = {
 year : int;
 ~color <ocaml default="`Black"> : color;
 ~name <ocaml default="\"Ford Model T\""> : string;
}

type point = (int * int * <ocaml default="0"> : int)

Field from

Position: left-hand side of a type definition, after the type name

Values: OCaml module name without the _t, _b, _j or _v
suffix. This can be also seen as the name of the original ATD file,
without the .atd extension and capitalized like an OCaml module
name.

Semantics: specifies the base name of the OCaml modules where the type
and values coming with that type are defined.

It is useful for ATD types defined as abstract and for types
annotated as predefined using the annotation <ocaml predef>. In both
cases, the missing definitions must be provided by modules composed of
the base name and the standard suffix assumed by Atdgen which is _t,
_b, _j or _v.

Example: First input file part1.atd:

type point = { x : int; y : int }

Second input file part2.atd depending on the first one:

type point <ocaml from="Part1"> = abstract
type points = point list

To use a different type name than defined in the Part1 module, add a
t field declaration to the annotation which refers to the original
type name:

type point_xy <ocaml from="Part1" t="point"> = abstract
type points = point_xy list

Field module

Using a custom wrapper

Using the built-in wrap constructor, it is possible to add a layer
of abstraction on top of the concrete structure used for serialization.

Position: after a wrap type constructor

Values: OCaml module name

A common use case is to parse strings used as unique identifiers and
wrap the result into an abstract type. Our OCaml module Uid needs to
provide a type t, and two functions wrap and unwrap as
follows:

type t
val wrap : string -> t
val unwrap : t -> string

Given that Uid OCaml module, we can write the following ATD
definition:

type uid = string wrap <ocaml module="Uid">

Other languages than OCaml using the same ATD type definitions may or
may not add their own abstract layer. Without an annotation, the
wrap construct has no effect on the value being wrapped, i.e.
wrap and unwrap default to the identity function.

It is also possible to define t, wrap, and unwrap inline:

type uid = string wrap <ocaml t="Uid.t"
 wrap="Uid.wrap"
 unwrap="Uid.unwrap">

This can be useful for very simple validation:

type uid = string wrap
 <ocaml wrap="fun s ->
 if String.length s <> 16 then
 failwith \"Invalid user ID\";
 s"
 >

Importing an external type definition

In most cases since Atdgen 1.2.0 module annotations are deprecated
in favor of from annotations previously described.

Position: left-hand side of a type definition, after the type name

Values: OCaml module name

Semantics: specifies the OCaml module where the type and values coming
with that type are defined. It is useful for ATD types defined as
abstract and for types annotated as predefined using the annotation
<ocaml predef>. In both cases, the missing definitions can be
provided either by globally opening an OCaml module with an OCaml
directive or by specifying locally the name of the module to use.

The latter approach is recommended because it allows to create type and
value aliases in the OCaml module being generated. It results in a
complete module signature regardless of the external nature of some
items.

Example: Input file example.atd:

type document <ocaml module="Doc"> = abstract

type color <ocaml predef module="Color"> =
 [Black | White] <ocaml repr="classic">

type point <ocaml predef module="Point"> = {
 x : float;
 y : float;
}

gives the following OCaml type definitions (file example.mli):

type document = Doc.document

type color = Color.color = Black | White

type point = Point.point = { x: float; y: float }

Now for instance Example.Black and Color.Black can be used
interchangeably in other modules.

Field t

Using a custom wrapper

Specifies the OCaml type of an abstract wrap construct, possibly
overriding the default M.t if M is the module where the
wrap and unwrap functions are found.

Position: after a wrap type constructor

Values: OCaml type name

Example:

type uid = string wrap <ocaml module="Uid" t="Uid.uid">

is equivalent to:

type uid = string wrap <ocaml t="Uid.uid" wrap="Uid.wrap" unwrap="Uid.unwrap">

Importing an external type definition

Position: left-hand side of a type definition, after the type name. Must
be used in conjunction with a module field.

Values: OCaml type name as found in an external module.

Semantics: This option allows to specify the name of an OCaml type
defined in an external module.

It is useful when the type needs to be renamed because its original name
is already in use or not enough informative. Typically we may want to
give the name foo to a type originally defined in OCaml as
Foo.t.

Example:

type foo <ocaml_biniou module="Foo" t="t"> = abstract
type bar <ocaml_biniou module="Bar" t="t"> = abstract
type t <ocaml_biniou module="Baz"> = abstract

allows local type names to be unique and gives the following OCaml type
definitions:

type foo = Foo.t
type bar = Bar.t
type t = Baz.t

Fields wrap and unwrap

See “Using a custom wrapper” under section ocaml, fields
module and t.

Field field_prefix

Position: record type expression

Values: any string making a valid prefix for OCaml record field names

Semantics: specifies a prefix to be prepended to each field of the OCaml
definition of the record. Overridden by alternate field names defined on
a per-field basis.

Example:

type point2 = {
 x : int;
 y : int;
} <ocaml field_prefix="p2_">

gives the following OCaml type definition:

type point2 = {
 p2_x : int;
 p2_y : int;
}

Field name

Position: after record field name or variant name

Values: any string making a valid OCaml record field name or variant
name

Semantics: specifies an alternate record field name or variant names to
be used in OCaml.

Example:

type color = [
 Black <ocaml name="Grey0">
 | White <ocaml name="Grey100">
 | Grey <ocaml name="Grey50">
]

type profile = {
 id <ocaml name="profile_id"> : int;
 username : string;
}

gives the following OCaml type definitions:

type color = [
 `Grey0
 | `Grey100
 | `Grey50
]

type profile = {
 profile_id : int;
 username : string;
}

Field repr

Integers

Position: after int type

Values: char, int32, int64, float

Semantics: specifies an alternate type for representing integers. The
default type is int, but char, int32, int64 or float
can be used instead.

The three types char, int32 and int64 are supported by both
Atdgen-biniou and Atdgen-json but Atdgen-biniou currently requires that
they map to the corresponding fixed-width types provided by the biniou
format.

The type float is only supported in conjunction with JSON and is
useful when an OCaml float is used to represent an integral value, such
as a time in seconds returned by Unix.time(). When converted into
JSON, floats are rounded to the nearest integer.

Example:

type t = {
 id : int
 <ocaml repr="int64">
 <biniou repr="int64">;
 data : string list;
}

Lists and arrays

Position: after a list type

Values: array

Semantics: maps to OCaml’s array type instead of list.

Example:

type t = {
 id : int;
 data : string list
 <ocaml repr="array">;
}

Sum types

Position: after a sum type (denoted by square brackets)

Values: classic

Semantics: maps to OCaml’s classic variants instead of polymorphic
variants.

Example:

type fruit = [Apple | Orange] <ocaml repr="classic">

translates to the following OCaml type definition:

type fruit = Apple | Orange

Shared values (obsolete)

Position: after a shared type

This feature is obsolete and was last supported by atdgen 1.3.1.

Field valid

Since atdgen 1.6.0.

Position: after any type expression except type variables

Values: OCaml function that takes one argument of the given type and
returns a bool

Semantics: atdgen -v produces for each type named t a function
validate_t:

val validate_t : Atdgen_runtime.Util.Validation.path -> t -> Atdgen_runtime.Util.Validation.error option

Such a function returns None if and only if the value and all of its
subnodes pass all the validators specified by annotations of the form
<ocaml validator="..."> or <ocaml valid="..."> (at most one per
node).

Example:

type positive = int <ocaml validator="fun x -> x > 0">

type point = {
 x : positive;
 y : positive;
 z : int;
}
 <ocaml valid="Point.validate">
 (* Some validating function from a user-defined module Point *)

The generated validate_point function calls the validator for the
containing object first (Point.validate) and continues on its fields
x then y until an error is returned.

match validate_point [] { x = 1; y = 0; z = 1 } with
| None -> ()
| Some e ->
 Printf.eprintf "Error: %s\n%!"
 (Atdgen_runtime.Util.Validation.string_of_error e)

The above code prints the following error message:

Error: Validation error; path = <root>.y

In order to customize the error message and print the faulty value, use
validator instead of valid, as described next.

Field validator

This is a variant of the valid annotation that allows full control
over the error message that gets generated in case of an error.

Position: after any type expression except type variables

Values: OCaml function that takes the path in current JSON structure and
the object to validate, and returns an optional error.

Semantics: atdgen -v produces for each type named t a function
validate_t:

val validate_t : Atdgen_runtime.Util.Validation.path -> t -> Atdgen_runtime.Util.Validation.error option

Such a function returns None if and only if the value and all of its
subnodes pass all the validators specified by annotations of the form
<ocaml validator="..."> or <ocaml valid="..."> (at most one per
node).

Example:

type positive = int <ocaml validator="
 fun path x ->
 if x > 0 then None
 else
 Some (
 Atdgen_runtime.Util.Validation.error
 ~msg: (\"Not a positive integer: \" ^ string_of_int x)
 path
)
">

type point = {
 x : positive;
 y : positive;
 z : int;
}
 <ocaml validator="Point.validate">
 (* Some validating function from a user-defined module Point *)

The following user code

match Toto_v.validate_point [] { x = 1; y = 0; z = 1 } with
| None -> ()
| Some e ->
 Printf.eprintf "Error: %s\n%!"
 (Atdgen_runtime.Util.Validation.string_of_error e)

results in printing:

Error: Validation error: Not a positive integer: 0; path = <root>.y

Section ocaml_biniou

Section ocaml_biniou takes precedence over section ocaml in
Biniou mode (-b) for the following fields:

	predef (see section ocaml, field predef)

	module (see section ocaml, field module)

	t (see section ocaml.t)

Section ocaml_json (obsolete)

Section ocaml_json takes precedence over section ocaml in JSON
mode (-json or -j) for the following fields:

	predef (see section ocaml, field predef)

	module (see section ocaml, field module)

	t (see section ocaml, field t)

Please note that atdgen -json is now deprecated in favor of
atdgen -j (json) and atdgen -t (types). The latter is in charge
of producing type definitions independently from JSON and will ignore
<ocaml_json ...> annotations, making them almost useless. The
equivalent <ocaml ...> annotations are almost always preferable.

Example:

This example shows how to parse a field into a generic tree of type
Yojson.Safe.t rather than a value of a specialized OCaml type.

type dyn <ocaml_json module="Yojson.Safe" t="json"> = abstract

type t = { foo: int; bar: dyn }

translates to the following OCaml type definitions:

type dyn = Yojson.Safe.t

type t = { foo : int; bar : dyn }

Sample OCaml value of type t:

{
 foo = 12345;
 bar =
 `List [
 `Int 12;
 `String "abc";
 `Assoc [
 "x", `Float 3.14;
 "y", `Float 0.0;
 "color", `List [`Float 0.3; `Float 0.0; `Float 1.0]
]
]
}

Corresponding JSON data as obtained with string_of_t:

{"foo":12345,"bar":[12,"abc",{"x":3.14,"y":0.0,"color":[0.3,0.0,1.0]}]}

Section doc

Unlike comments, doc annotations are meant to be propagated into the
generated source code. This is useful for making generated interface
files readable without having to consult the original ATD file.

Generated source code comments can comply to a standard format and take
advantage of documentation generators such as javadoc or ocamldoc.

Field text

Position:

	after the type name on the left-hand side of a type definition

	after the type expression on the right hand of a type definition (but
not after any type expression)

	after record field names

	after variant names

Values: UTF-8-encoded text using a minimalistic markup language

Semantics: The markup language is defined as follows:

	Blank lines separate paragraphs.

	{{ }} can be used to enclose inline verbatim text.

	{{{ }}} can be used to enclose verbatim text where whitespace is
preserved.

	The backslash character is used to escape special character
sequences. In regular paragraph mode the special sequences are \,
{{ and {{{. In inline verbatim text, special sequences are
\ and }}. In verbatim text, special sequences are \ and
}}}.

Example: The following is an example demonstrating the use of doc
annotations generated using:

$ atdgen -t ocamldoc_example.atd

Input file ocamldoc_example.atd:

<doc text="This is the title">

type point = {
 x <doc text="The first coordinate">: float;
 y <doc text="The second coordinate">: float;
}
 <doc text="
The type of a point. A value {{p}} can be created as follows:
{{{
let p = { x = 1.2; y = 5.0 }
}}}
">

type color = [
 | Black <doc text="Same as {{RGB (0,0,0)}}">
 | White <doc text="Same as {{RGB (255, 255, 255)}}">
 | RGB
 <doc text="Red, green, blue components">
 of (int * int * int)
]

translates using atdgen -t ocamldoc_example.atd into the following
OCaml interface file ocamldoc_example_t.mli with ocamldoc-compliant
comments:

(* Auto-generated from "ocamldoc_example.atd" *)

(** This is the title *)

(**
 The type of a point. A value [p] can be created as follows:

{v
let p = \{ x = 1.2; y = 5.0 \}
v}
*)
type point = {
 x: float (** The first coordinate *);
 y: float (** The second coordinate *)
}

type color = [
 `Black (** Same as [RGB (0,0,0)] *)
 | `White (** Same as [RGB (255, 255, 255)] *)
 | `RGB of (int * int * int) (** Red, green, blue components *)
]

Atdgen runtime library

A library named atdgen-runtime [https://github.com/ahrefs/atd/tree/master/atdgen-runtime/src] is installed by the standard installation
process. Only a fraction of it is officially supported and documented.

Modules intended for all users are:

	Util

	Json_adapter

The other modules exported by the library are used directly by
generated code. Tool developers may use them but we don’t guarantee
strong compatibility across releases.

Java Support - atdj

The ATDJ tool generates a Java interface from an ATD interface. In
particular, given a set of ATD types, this tool generates a set of Java
classes representing those types. These classes may then be instantiated
from JSON representations of those same ATD types.

The primary benefits of using the generated interface, over manually
manipulating JSON strings from within Java, are safety and ease of use.
Specifically, the generated interface offers the following features:

	JSON strings are automatically checked for correctness with respect
to the ATD specificion.

	Details such as optional fields and their associated default values
are automatically handled.

	Several utility methods are included “for free”. These support
equality testing, the visitor pattern and conversion back to JSON.

Installation

Build and install the atdj command with opam [https://opam.ocaml.org/]:

opam install atdj

Quick-start

In this section we briefly describe how to to generate a Java interface
from an example ATD file test.atd. We then show how to build and run
an example application AtdjTest that uses the generated interface.

	Generate and compile the interface:

atdj -graph -package com.mylife.test test.atd
export CLASSPATH='.:json.jar'
javac com/mylife/test/*.java

	Compile and run the example, saving the output for later inspection:

javac AtdjTest.java
java AtdjTest >test.out

	Optionally, generate Javadoc documentation:

javadoc -d doc -public com.mylife.test

The resulting documentation is located in the directory doc.

	Optionally, generate a class graph of the generated interface:

dot -Tpdf test.dot >test.pdf

The output file test.pdf contains a class graph of the generated
Java interface. The required dot program is part of the Graphviz
graph visualisation package, and may be downloaded from
http://www.graphviz.org/.

In the following sections we discuss the individual steps in more
detail, using the example from above.

Generating the interface

In this section we describe the process of generating a Java interface
from an ATD specification.

A Java interface is generated from an ATD file as

atdj -package <package> <atd_file>

This outputs a set of Java source files. The -package option causes
the resulting classes to be members of the specified package, and also
to be located in the corresponding output directory. If no package is
specified, then the default package of out is used.

For example, the command

atdj -graph -package com.mylife.test test.atd

causes the generated files to be members of the package
com.mylife.test and to be located in the directory
com/mylife/test.

The generated source files reference various members of the included
org.json package. Therefore, in order to compile the generated files,
the org.json package must be located within the Java classpath.
Supposing that the org.json package is located within the archive
json.jar within the current directory, it is sufficient to set the
classpath as follows:

export CLASSPATH='json.jar'

Returning to our example, the generated source files may then be
compiled as:

javac com/mylife/test/*.java

Generating Javadoc documentation

The generated Java code contains embedded Javadoc comments. These may be
extracted to produce Javadoc documentation. In the case of our example,
it is sufficient to run the following command:

javadoc -d doc/example -public com.mylife.test

Generating a class graph

We now discuss the -graph option of ATDJ. When enabled, this causes
ATDJ to output a graph of the class hierarchy of the generated code. The
output is intended to document the generated code, helping users to
avoid consulting the source code.

Continuing with our example, the use of this option results in the
generation of an additional output file named test.dot. Assuming
that the dot program is installed, a PDF class graph named
test.pdf can then created by running the command

dot -Tpdf test.dot >test.pdf

In the generated class graph, rectangular and oval nodes correspond to
classes and interfaces, respectively. Field names are specified in the
second line of retangular (class) nodes. Solid arcs denote subtyping
(implements/extends), whilst dashed arcs link fields to their
types.

Translation reference

In this section we informally define how Java types are generated from
ATD types.

Bools, ints, floats, string, lists

	ATD type, t

	Java type, <t>

	bool

	boolean

	int

	int

	float

	double

	string

	String

	t list

	<t>[]

Options

Suppose that we have ATD type t option. Then this is translated into
the following Java reference type:

public class CNAME implements Atdj {
 // Constructor
 public CNAME(String s) throws JSONException { ... }

// Get the optional value, if present
public CNAME get() throws JSONException { ... }

// Comparison and equality
public int compareTo(CNAME that) { ... }
public boolean equals(CNAME that) { ... }

public <t> value; // The value
public boolean is_set; // Whether the value is set
}

Records

Suppose that we have the ATD record type

{ f_1: t_1
; ...
; f_n: t_n
}

Then this is translated into the following Java reference type:

public class CNAME implements Atdj {
 // Constructor
 public CNAME(String s) throws JSONException { ... }

// Comparison and equality
public int compareTo(CNAME that) { ... }
public boolean equals(CNAME that) { ... }

// The individual fields
public <t_1> f_1;
...
public <t_n> f_n;
}

An optional field ~f_i: t_i causes the class field f_i to be
given a default value of type <t_i> if the field is absent from the
JSON string used to instantiate the class. The default values are as
follows:

	ATD type

	Default Java value

	bool

	false

	int

	0

	float

	0.0

	string

	“”

	t list

	Empty array

	t option

	Optional value with is_set = false

Default values cannot be defined for record and sum types.

An optional field ?f_i: t_i option has the same default behaviour as
above, with the additional behaviour that if the field is present in the
JSON string then the value must be of type <t> (not <t> option); the
value is then automatically lifted into a <t> option, with is_set =
true.

Sums

Suppose that we have the ATD sum type

[C_1 of t_1
| ...
| C_n of t_n
]

Then this is translated into the following Java reference types:

public interface IFCNAME extends Atdj {
 public int compareTo(IFCNAME that);
 public boolean equals(IFCNAME that);
 ...
}

public class CNAME_i implements IFCNAME, Atdj {
 // Comparison and equality
 public int compareTo(CNAME that) { ... }
 public boolean equals(CNAME that) { ... }

public <t_i> value;
}

The value field is absent if the constructor C_i has no argument.

The Atdj and Visitor interfaces

All generated reference types additionally implement the interface

interface Atdj {
 String toString();
 String toString(int indent);
 int hashCode();
 Visitor accept(Visitor v);
}

where the Visitor interface is defined as

public interface Visitor {
 public void visit(CNAME_1 value);
 ...
 public void visit(CNAME_n value);
}

for generated reference types CNAME_i. Visit methods for
primitive and optional primitive types are omitted.

Scala Support - atds

Python Support - atdpy

This documentation is incomplete. Your help would be appreciated! In
particular, some how-to guides would be great.

Tutorials

Hello World

Install atdpy with opam:

opam install atdpy

Create a file hello.atd containing this:

type message = {
 subject: string;
 body: string;
}

Call atdpy to produce hello.py:

$ atdpy hello.atd

There’s now a file hello.py that contains a class looking like
this:

...

@dataclass
class Message:
 """Original type: message = { ... }"""

 subject: str
 body: str

 @classmethod
 def from_json(cls, x: Any) -> 'Message':
 ...

 def to_json(self) -> Any:
 ...

 @classmethod
 def from_json_string(cls, x: str) -> 'Message':
 ...

 def to_json_string(self, **kw: Any) -> str:
 ...

Let’s write a Python program say_hello.py that uses this code:

import hello

msg = hello.Message("Hello", "Dear friend, I hope you are well.")
print(msg.to_json_string())

Running it will print the JSON message:

$ python3 say_hello.py
{"subject": "Hello", "body": "Dear friend, I hope you are well."}

Such JSON data can be parsed. Let’s write a program
read_message.py that consumes JSON data from standard input:

import hello, sys, json

data = json.load(sys.stdin)
msg = hello.Message.from_json(data)
print(f"subject: {msg.subject}")

Output:

$ echo '{"subject": "big news", "body": ""}' | python3 read_message.py
subject: big news

It works! But what happens if the JSON data lacks a "subject"
field? Let’s see:

$ echo '{"subj": "big news", "body": ""}' | python3 read_message.py
Traceback (most recent call last):
...
ValueError: missing field 'subject' in JSON object of type 'Message'

And what if our program also thought that the correct field name was
subj rather than subject? Here’s read_message_wrong.py which
tries to access a subj field:

import hello, sys, json

data = json.load(sys.stdin)
msg = hello.Message.from_json(data)
print(f"subject: {msg.subj}")

Let’s run the program through mypy:

$ mypy read_message_wrong.py
read_message_wrong.py:5: error: "Message" has no attribute "subj"
Found 1 error in 1 file (checked 1 source file)

Mypy detected that our program makes incorrect assumptions about the
message format without running it. On the correct program
read_message.py, we get a reassuring message:

$ mypy read_message.py
Success: no issues found in 1 source file

ATD Records, JSON objects, Python classes

An ATD file contains types that describe the structure of JSON
data. JSON objects map to Python classes and objects. They’re called
records in the ATD language. Let’s define a simple record type
in the file hello_plus.atd:

type message = {
 subject: string;
 ~body: string;
}

Note the ~ in front of the body field. It means that this field
has a default value. Whenever the JSON field is missing from a JSON
object, a default value is assumed. The implicit default value for a
string is "".

Let’s add a signature field whose default value isn’t the empty
string:

type message = {
 subject: string;
 ~body: string;
 ~signature <python default="'anonymous'">: string;
}

Finally, we’ll add an optional url field that doesn’t take a default value
at all:

type message = {
 subject: string;
 ~body: string;
 ~signature <python default="'anonymous'">: string;
 ?url: string option;
}

Let’s generate the Python code for this.

$ atdpy hello_plus.atd

Let’s update our reader program read_message_plus.py to this:

import hello_plus, sys, json

data = json.load(sys.stdin)
msg = hello_plus.Message.from_json(data)
print(msg)

We can test it, showing us the final value of each field:

$ echo '{"subject":"hi"}' | python3 read_message_plus.py
Message(subject='hi', body='', signature='anonymous', url=None)

How-to guides

Defining default field values

[missing]

Renaming field names

[missing]

Deep dives

[missing]

Reference

Type mapping

	ATD type

	Python type

	JSON example

	unit

	None

	null

	bool

	bool

	True

	int

	int

	42

	float

	float

	6.28

	string

	str

	"Hello"

	int list

	List[int]

	[1, 2, 3]

	(int * int)

	Tuple[int, int]

	[-1, 1]

	int nullable

	Optional[int]

	42 or null

	int option

	Optional[int]

	["Some", 42] or "None"

	abstract

	Any

	anything

	record type

	class

	{"id": 17}

	[A | B of int]

	Union[A, B]

	"A" or ["B", 5]

	foo_bar

	FooBar

	

Supported ATD annotations

Default field values

Record fields following a ~ assume a default value. The default value can
be implicit as mandated by the ATD language specification (false for
bool, zero for int, etc.) or it can be a user-provided value.

A user-provided default uses an annotation of the form
<python default="VALUE"> where VALUE evaluates to a Python
expression e.g.

type foo = {
 ~answer <python default="42">: int;
}

Default values are always honored when reading JSON data from
Python. However, the implementation of dataclass via the
@dataclass decorator prevents the use of mutable values for
defaults. This causes class constructors to not have default fields
that are mutable such as []. For example:

type bar = {
 ~items: int list;
}

will translate to a class constructor that requires one argument of
type list. For example, Bar([1, 2, 3]) would be legal but
Bar() would be illegal. Reading from the JSON object {} would
however succeed. Therefore, the following two Python expressions would
be valid and equivalent:

Bar([])
Bar.from_json_string('{}')

Field and constructor renaming

Alternate JSON object field names can be specified using an annotation
of the form <json name="NAME"> where NAME is the desired field
name to be used in the JSON representation. For example, the following
specifies the JSON name of the id field is ID:

type foo = {
 id <json name="ID">: string
}

Similarly, the constructor names of sum types can also be given
alternate names in the JSON representation. Here’s an example:

type bar = [
| Alpha <json name="alpha">
| Beta <json name="beta"> of int
]

Note that field names and constructor names in the generated Python
code are assigned automatically so as to avoid conflicts with
Python keywords or reserved identifiers.

Alternate representations for association lists

List of pairs can be represented by JSON objects or by
Python dictionaries if the correct annotations are provided:

	(string * bar) list <json repr="object"> will use JSON objects to
represent a list of pairs of Python type List[str, Bar].
Using the annotation <json repr="array"> is equivalent to the default.

	(foo * bar) list <python repr="dict"> will use a Python
dictionary of type Dict[Foo, Bar] to represent the association list.
Using the annotation <python repr="list"> is equivalent to the default.

Additional imports

At the beginning of the ATD file, placing annotations like this one
allow inserting arbitrary Python code or comments:

<python text="import deco">

This is the recommended mechanism for inserting imports. In contrast, it
should be used only as last resort for inserting functions or classes.

In the future, atdpy may generate more than one kind of files. An
annotation of the form <python text="..."> will insert that text
into all the generated files. In order to insert code only in the
.py file that handles JSON, it is recommended to use a more
specific annotation of the form <python json_py.text="...">:

<python json_py.text="import deco">

Custom class decorators

Extra class decorators can be specified in addition to @dataclass.
The following ATD definition will add 3 decorators:

type thing <python decorator="deco.deco1"
 decorator="deco.deco2(42)"
 decorator="dataclass(order=True)"> = {
 foo: int;
 bar: string;
}

The generated Python class will start like this:

@deco.deco1
@deco.deco2(42)
@dataclass(order=True)
@dataclass
class Thing:
 ...

If extra class decorators are specifed on a sum type, the python classes generated
for the constructors of the sum type will also have the extra class decorators.

TypeScript Support - atdts

This documentation is incomplete. Your help would be appreciated! In
particular, some how-to guides would be great.

Tutorials

Hello World

Install atdts with opam:

opam install atdts

Create a file hello.atd containing this:

type message = {
 subject: string;
 body: string;
}

Call atdts to produce hello.ts:

$ atdts hello.atd

There’s now a file hello.ts that contains a class looking like
this:

...

export type Message = {
 subject: string;
 body: string;
}

export function writeMessage(x: Message, context: any = x): any {
 ...
}

export function readMessage(x: any, context: any = x): Message {
 ...
}

...

Let’s write a TypeScript program say_hello.ts that uses this code:

import * as hello from "./hello"

const msg: hello.Message = {
 subject: "Hello",
 body: "Dear friend, I hope you are well."
}

console.log(JSON.stringify(hello.writeMessage(msg)))

Running it will print the JSON message:

$ tsc --lib es2017,dom say_hello.ts
{"subject":"Hello","body":"Dear friend, I hope you are well."}

Such JSON data can be parsed. Let’s write a program
read_message.ts that consumes JSON data from standard input:

import * as hello from "./hello"
import * as readline from "readline"

const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
})

rl.question('', (data: string) => {
 const msg = hello.readMessage(JSON.parse(data))
 console.log("subject: " + msg.subject)
})

Output:

Install dependencies
$ npm install --save-dev @types/node
$ npm install readline

Compile
$ tsc --lib es2017,dom read_message.ts

Run
$ echo '{"subject": "big news", "body": ""}' | js read_message.js
subject: big news

It works! But what happens if the JSON data lacks a "subject"
field? Let’s see:

$ echo '{"body": ""}' | js read_message.js
{"body": ""}
readline.js:1086
 throw err;
 ^

Error: missing field 'subject' in JSON object of type 'Message'
...

And what if our program also thought that the correct field name was
subj rather than subject? Here’s read_message_wrong.ts which
tries to access a subj field:

import * as hello from "./hello"
import * as readline from "readline"

const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
})

rl.question('', (data: string) => {
 const msg = hello.readMessage(JSON.parse(data))
 console.log("subject: " + msg.subj)
})

Let’s compile our program:

$ tsc --lib es2017,dom read_message_wrong.ts
read_message_wrong.ts:11:33 - error TS2339: Property 'subj' does not exist on type 'Message'.

11 console.log("subject: " + msg.subj)
                                   ~~~~


Found 1 error in read_message_wrong.ts:11





The typechecker detected that our program makes incorrect assumptions
about the message format without running it.



ATD Records, JSON objects, TypeScript objects

An ATD file contains types that describe the structure of JSON
data. JSON objects map to TypeScript types and objects. They’re called
records in the ATD language. Let’s define a simple record type
in the file hello_plus.atd:

type message = {
  subject: string;
  ~body: string;
}





Note the ~ in front of the body field. It means that this field
has a default value. Whenever the JSON field is missing from a JSON
object, a default value is assumed. The implicit default value for a
string is "".

Let’s add a signature field whose default value isn’t the empty
string:

type message = {
  subject: string;
  ~body: string;
  ~signature <ts default="'anonymous'">: string;
}





Finally, we’ll add an optional url field that doesn’t take a default value
at all:

type message = {
  subject: string;
  ~body: string;
  ~signature <ts default="'anonymous'">: string;
  ?url: string option;
}





Let’s generate the TypeScript code for this.

$ atdts hello_plus.atd





Let’s update our reader program read_message_plus.ts to this:

import * as hello_plus from "./hello_plus"
import * as readline from "readline"

const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout
})

rl.question('', (data: string) => {
  const msg = hello_plus.readMessage(JSON.parse(data))
  console.log(msg)
})





We can test it, showing us the final value of each field:

$ tsc --lib es2017,dom read_message_plus.ts
$ echo '{"subject":"hi"}' | js read_message_plus.js
{"subject":"hi"}
{ subject: 'hi',
  body: '',
  signature: 'anonymous',
  url: undefined }








How-to guides


Defining default field values

[missing]



Renaming field names

[missing]




Deep dives

[missing]



Reference


Type mapping








	ATD type

	TypeScript type

	JSON example





	unit

	null

	null



	bool

	bool

	True



	int

	Int*

	42 or 42.0



	float

	number

	6.28



	string

	string

	"Hello"



	string list

	string[]

	["a", "b", "c!"]



	(bool * float)

	[boolean, number]

	[-1, 1]



	int nullable

	Int | null

	42 or null



	abstract

	any

	anything



	{ id: string }

	{ id: string }

	{"id": "3hj8d"}



	[A | B of int]

	{kind: 'A'}
| {kind: 'B', value: Int}

	"A" or ["B", 5]



	foo_bar

	FooBar

	





*the Int type is an alias for number but additionally, the
read and write functions generated by atdts check that the number
is a whole number.



Supported ATD annotations


Default field values

Record fields following a ~ assume a default value. The default value can
be implicit as mandated by the ATD language specification (false for
bool, zero for int, etc.) or it can be a user-provided value.

A user-provided default uses an annotation of the form
<ts default="VALUE"> where VALUE evaluates to a TypeScript
expression e.g.

type foo = {
  ~answer <ts default="42">: int;
}





For example, the JSON value {} will be read as {answer: 42}.



Field and constructor renaming

Alternate JSON object field names can be specified using an annotation
of the form <json name="NAME"> where NAME is the desired field
name to be used in the JSON representation. For example, the following
specifies the JSON name of the id field is ID:

type foo = {
  id <json name="ID">: string
}





Similarly, the constructor names of sum types can also be given
alternate names in the JSON representation. Here’s an example:

type bar = [
| Alpha <json name="alpha">
| Beta <json name="beta"> of int
]







Alternate representations for association lists

List of pairs can be represented by JSON objects or by
TypeScript maps if the correct annotations are provided:


	(string * bar) list <json repr="object"> will use JSON objects to
represent a list of pairs of TypeScript type [string, Bar][].
Using the annotation <json repr="array"> is equivalent to the default.


	(foo * bar) list <ts repr="map"> will use a TypeScript
map of type Map<Foo, Bar> to represent the association list.
Using the annotation <ts repr="array"> is equivalent to the default.










          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Interoperability with other tools


JSON Schema

ATD type definitions can be translated to
JSON Schema [https://json-schema.org/]
with atdcat. The user must specify the main type on the command
line since ATD doesn’t have a notion of main type or root type.
This can be useful for target languages that are not yet supported by
ATD or for educational purposes.


Example

Input: ATD file message.atd:

type msg = {
  subject: string;
  ?body: string option;
  ~attachments: attachment list;
}

type attachment = [
  | Image of string
  | Virus
]





Conversion to JSON Schema:

$ atdcat -jsonschema msg message.atd -o message.schema.json





Output: JSON Schema file message.schema.json:

{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "description": "Translated by atdcat from 'message.atd'",
  "type": "object",
  "required": [ "subject" ],
  "properties": {
    "subject": { "type": "string" },
    "body": { "type": "string" },
    "attachments": {
      "type": "array",
      "items": { "$ref": "#/definitions/attachment" }
    }
  },
  "definitions": {
    "attachment": {
      "oneOf": [
        {
          "type": "array",
          "minItems": 2,
          "items": false,
          "prefixItems": [ { "const": "Image" }, { "type": "string" } ]
        },
        { "const": "Virus" }
      ]
    }
  }
}





The jsonschema tool (Python implementation) can validate JSON data
using the JSON Schema file that we generated. For example, passing an
empty object {} correctly results in an error telling us the subject
field is missing:

$ jsonschema message.json -i <(echo '{}')
{}: 'subject' is a required property





With valid JSON input such as
{"subject": "hello", "attachments": ["Virus"]}, the command
exits successfully and silently:

$ jsonschema message.json -i <(echo '{"subject": "hello", "attachments": ["Virus"]}')










          

      

      

    

  

    
      
          
            
  
ATD core syntax reference


Introduction

ATD stands for Adjustable Type Definitions.

(* This is a sample ATD file *)

type profile = {
  id : string;
  email : string;
  ~email_validated : bool;
  name : string;
  ?real_name : string option;
  ~about_me : string list;
  ?gender : gender option;
  ?date_of_birth : date option;
}

type gender = [ Female | Male ]

type date = {
  year : int;
  month : int;
  day : int;
}





ATD is a language for defining data types across multiple programming languages
and multiple data formats. That’s it.

We provide an OCaml library that provides a parser and a collection of tools
that make it easy to write data validators and code generators based on ATD
definitions.

Unlike big frameworks that provide everything in one monolithic package, we
split the problem of data exchange into logical modules and ATD is one of them.
In particular, we acknowledge that the following pieces have little in common
and should be defined and implemented separately:


	data type specifications


	transport protocols


	serialization formats




Ideally we want just one single language for defining data types and it should
accomodate all programming languages and data formats. ATD can play this role,
but its OCaml implementation makes it particularly easy to translate ATD
specifications into other interface definition languages if needed.

It is however much harder to imagine that a single transport protocol and a
single serialization format would ever become the only ones used. A reader from
the future might wonder why we are even considering defining a transport
protocol and a serialization format together. This has been a widespread
practice at least until the beginning of the 21st century (ONC RPC, ICE, Thrift,
etc.). For mysterious reasons, people somehow became convinced that calls to
remote services should be made to mimic internal function calls, pretending that
nothing really bad could happen on the way between the caller and the remote
service. Well, I don’t let my 3-old daughter go to school by herself because the
definition of the external world is precisely that it is unsafe.

Data input is by definition unsafe. A program whose internal data is corrupted
should abort but a failed attempt to read external data should not cause a
program to abort. On the contrary, a program should be very resistent to all
forms of data corruption and attacks and provide the best diagnosis possible
when problems with external data occur.

Because data exchange is critical and involves multiple partners, we depart from
magic programming language-centric or company-centric approaches. We define ATD,
a data type definition language designed for maximum expressivity, compatibility
across languages and static type checking of programs using such data.


Scope

ATD offers a core syntax for type definitions, i.e. an idealized view of the
structure of data. Types are mapped to each programming language or data format
using language-specific conventions. Annotations can complete the type
definitions in order to specify options for a particular language. Annotations
are placed in angle brackets after the element they refer to:

type profile = {
  id : int <ocaml repr="int64">;
    (*
      An int here will map to an OCaml int64 instead of
      OCaml's default int type.
      Other languages than OCaml will use their default int type.
    *)

  age : int;
    (* No annotation here, the default int type will be used. *)
}





ATD supports:


	the following atomic types: bool, int, float, string and unit;


	built-in list and option types;


	records aka structs with a syntax for optional fields with or
without default;


	tuples;


	sum types aka variant types, algebraic data types or tagged unions;


	parametrized types;


	inheritance for both records and sum types;


	abstract types;


	arbitrary annotations.




ATD by design does not support:


	function types, function signatures or method signatures;


	a syntax to represent values;


	a syntax for submodules.






Language overview

ATD was strongly inspired by the type system of ML and OCaml. Such a
type system allows static type checking and type inference, properties
which contribute to the safety and conciseness of the language.

Unlike mainstream languages like Java, C++, C# or Python to name a
few, languages such as Haskell or OCaml offer sum types,
also known as algebraic data types or variant types. These allow to
specify that an object is of one kind or another without ever
performing dynamic casts.

(* Example of a sum type in ATD. The vertical bar reads `or'. *)
type shape = [
    Square of float               (* argument: side length *)
  | Rectangle of (float * float)  (* argument: width and height *)
  | Circle of float               (* argument: radius *)
  | Dot                           (* no argument *)
]





A notable example of sum types is the predefined option type.
An object of an option type contains either one value of a given type
or nothing. We could define our own int_option type as follows:

type int_option = [ None | Some of int ]





ATD supports parametrized types also known as generics in Java or
templates in C++.  We could define our own generic option type as
follows:

type 'a opt = [ None | Some of 'a ]
  (* 'a denotes a type parameter. *)

type opt_int = int opt
  (* equivalent to int_option defined in the previous example *)

type opt_string = string opt
  (* same with string instead of int *)





In practice we shall use the predefined option type.
The option type is fundamentally different from nullable objects since
the latter don’t allow values that would have type ‘a option option.

ATD also support product types. They come in two forms: tuples and
records:

type tuple_example = (string * int)

type record_example = {
  name : string;
  age : int;
}





Although tuples in theory are not more expressive than records, they are much
more concise and languages that support them natively usually do not require
type definitions.

Finally, ATD supports multiple inheritance which is a simple mechanism for
adding fields to records or variants to sum types:

type builtin_color = [
    Red | Green | Blue | Yellow
  | Purple | Black | White
]

type rgb = (float * float * float)
type cmyk = (float * float * float * float)

(* Inheritance of variants *)
type color = [
    inherit builtin_color
  | Rgb of rgb
  | Cmyk of cmyk
]





type basic_profile = {
  id : string;
  name : string;
}

(* Inheritance of record fields *)
type full_profile = {
  inherit basic_profile;
  date_of_birth : (int * int * int) option;
  street_address1 : string option;
  street_address2 : string option;
  city : string option;
  zip_code : string option;
  state : string option;
}







Editing and validating ATD files

The extension for ATD files is .atd. Editing ATD files is best achieved
using an OCaml-friendly editor since the ATD syntax is vastly compatible with
OCaml and uses a subset of OCaml’s keywords.

Emacs users can use caml-mode or tuareg-mode to edit ATD files. Adding the
following line to the ~/.emacs file will automatically use tuareg-mode when
opening a file with a .atd extension:

(add-to-list 'auto-mode-alist '("\\.atd\\'" . tuareg-mode))





The syntax of an ATD file can be checked with the program atdcat provided with
the OCaml library atd. atdcat pretty-prints its input data, optionally after
some transformations such as monomorphization or inheritance. Here is the output
of atdcat -help:

Usage: _build/install/default/bin/atdcat FILE
  -o <path>
          write to this file instead of stdout
  -x
          make type expressions monomorphic
  -xk
          keep parametrized type definitions and imply -x.
          Default is to return only monomorphic type definitions
  -xd
          debug mode implying -x
  -i
          expand all 'inherit' statements
  -if
          expand 'inherit' statements in records
  -iv
          expand 'inherit' statements in sum types
  -jsonschema <root type name>
          translate the ATD file to JSON Schema.
  -jsonschema-no-additional-properties
          emit a JSON Schema that doesn't tolerate extra fields on JSON
          objects.
  -jsonschema-version { draft-2019-09 | draft-2020-12 }
          specify which version of the JSON Schema standard to target.
          Default: latest supported version, which is currently
          'draft-2020-12  '.
  -ml <name>
          output the ocaml code of the ATD abstract syntax tree
  -html-doc
          replace directly <doc html="..."> by (*html ... *)
          or replace <doc text="..."> by (*html ... *)
          where the contents are formatted as HTML
          using <p>, <code> and <pre>.
          This is suitable input for "caml2html -ext html:cat"
          which converts ATD files into HTML.
  -strip NAME1[,NAME2,...]
          remove all annotations of the form <NAME1 ...>,
          <NAME2 ...>, etc.
  -strip-all
          remove all annotations
  -version
          print the version of atd and exit
  -help  Display this list of options
  --help  Display this list of options








ATD language

This is a precise description of the syntax of the ATD language, not a
tutorial.


Notations

Lexical and grammatical rules are expressed using a BNF-like syntax.
Graphical terminal symbols use unquoted strings in typewriter font.
Non-graphical characters use their official uppercase ASCII name such
as LF for the newline character or SPACE for the space character.
Non-terminal symbols use the regular font and link to their
definition.  Parentheses are used for grouping.

The following postfix operators are used to specify repeats:







	x*

	0, 1 or more occurrences of x



	x?

	0 or 1 occurrence of x



	x+

	1 or more occurrences of x








Lexical rules

ATD does not enforce a particular character encoding other than ASCII
compatibility. Non-ASCII text and data found in annotations and
in comments may contain arbitrary bytes in the non-ASCII range 128-255
without escaping. The UTF-8 encoding is however strongly recommended
for all text. The use of hexadecimal or decimal escape sequences is
recommended for binary data.

An ATD lexer splits its input into a stream of tokens,
discarding whitespace and comments.








	token ::=

	keyword

	


	|

	lident

	


	|

	uident

	


	|

	tident

	


	|

	string

	


	ignorable ::=

	space

	discarded



	|

	comment

	


	space ::=

	SPACE | TAB | CR | LF

	


	blank ::=

	SPACE | TAB

	


	comment ::=

	(* (comment | string | byte)* *)

	


	lident ::=

	(lower | _ identchar) identchar*

	lowercase
identifier



	uident ::=

	upper identchar*

	uppercase
identifier



	tident ::=

	' lident

	type parameter



	lower ::=

	a…``z``

	


	upper ::=

	A…``Z``

	


	identchar ::=

	upper | lower | digit | _ | '

	


	string ::=

	" (substring | ')* "

	double-quoted
string literal,
used in
annotations



	|

	' (substring | ")* '

	single-quoted
string literal,
used in
annotations



	substring ::=

	\\

	single backslash



	|

	\"

	double quote



	|

	\'

	single quote



	|

	\x hex hex

	single byte
in hexadecimal
notation



	|

	\ digit digit digit

	single byte
in decimal
notation



	|

	\n

	LF



	|

	\r

	CR



	|

	\t

	TAB



	|

	\b

	BS



	|

	\ CR? LF blank*

	discarded



	|

	not-backslash

	any byte
except \
or " or '



	digit ::=

	0 … 9

	


	hex ::=

	0 … 9

	


	|

	a… f

	


	|

	A … F

	


	keyword ::=

	( | ) | [

	all keywords



	|

	] | { | }

	


	|

	< | >

	


	|

	; | , | : | *

	


	|

	| | = | ? | ~

	


	|

	type | of | inherit

	







Grammar








	module ::=

	annot* typedef*

	entry point



	annot ::=

	< lident annot-field* >

	annotation



	annot-field ::=

	(lident (= string)?)

	


	typedef ::=

	type params? lident annot
= expr

	type definition



	params ::=

	tident

	one parameter



	|

	( tident (, tident)+ )

	two or more
parameters



	expr ::=

	expr-body annot*

	type expression



	|

	tident

	


	expr-body ::=

	args? lident

	


	|

	(
(cell (* cell)*)?
)

	tuple type



	|

	{
((field (; field)*) ;?)?
}

	record type



	|

	[
(|? variant (| variant)*)?
]

	sum type



	args ::=

	expr

	one argument



	|

	( expr (, expr)+ )

	two or more
arguments



	cell ::=

	(annot+ :)? expr

	


	field ::=

	(? | ~)? lident = expr

	


	|

	inherit expr

	


	variant ::=

	uident annot* of expr

	


	|

	uident annot*

	


	|

	inherit expr

	







Predefined type names

The following types are considered predefined and may not be
redefined.







	Type name

	Intended use





	unit

	Type of just one value, useful with parametrized types



	bool

	Boolean



	int

	Integer



	float

	Floating-point number



	string

	Sequence of bytes or characters



	'a option

	Container of zero or one element of type ‘a.
See also ‘a nullable.



	'a list

	Collection or sequence of elements of type ‘a



	'a nullable

	Extend type ‘a with an extra conventional value,
typically called “null”. The operation is idempotent,
i.e. ‘a nullable is equivalent to
‘a nullable nullable.



	'a shared

	Values of type ‘a for which sharing must be preserved



	'a wrap

	Values on which a custom, reversible transformation
may be applied, as specified by
language-specific annotations.



	abstract

	Unspecified type. By default, this is meant to
accept any data that is syntactically valid, such as
any JSON data that could be parsed successfully.
With the help of ATD annotations, this can be
used to express types not supported by the ATD
language such as “either a boolean or a string”.








Shared values (deprecated)

ATD supports a special type x shared where x can be
any monomorphic type expression.
It allows notably to represent cyclic values and to enforce that cycles
are preserved during transformations such as serialization.

(* Example of a simple graph type *)
type shared_node = node shared (* sharing point *)
type graph = shared_node list
type node = {
  label : string;
  neighbors : shared_node list;
}





Two shared values that are physically identical must remain physically
identical after any translation from one data format to another.

Each occurrence of a shared type expression in the ATD
source definition defines its own sharing point.
Therefore the following attempt at defining a graph type will not
preserve cycles because two sharing points are defined:

(* Incorrect definition of a graph type *)
type node = {
  label : string;
  neighbors : node shared (* sharing point 1 *) list;
}

(* Second occurrence of "shared", won't preserve cycles! *)
type graph = node shared (* sharing point 2 *) list





There is actually a way of having multiple shared type expressions using the
same sharing point but this feature is designed for code generators and should
not be used in handwritten ATD definitions. The technique consists in providing
an annotation of the form <share id=x> where x is any string
identifying the sharing point. The graph example can be rewritten correctly as:

type node = {
  label : string;
  neighbors : node shared <share id="1"> list;
}

type graph = node shared <share id="1"> list










          

      

      

    

  

    
      
          
            
  
Atdgen reference


Description

Atdgen is a command-line program that takes as input type definitions in
the ATD syntax and produces OCaml code
suitable for data serialization and deserialization.

Two data formats are currently supported, these are
JSON [http://json.org/] and
biniou [https://github.com/ocaml-community/biniou], a binary format with
extensibility properties similar to JSON. Atdgen-json and Atdgen-biniou
will refer to Atdgen used in one context or the other.

Atdgen was designed with efficiency and durability in mind. Software
authors are encouraged to use Atdgen directly and to write tools that
may reuse part of Atdgen’s source code.

Atdgen uses the following packages that were developed in conjunction
with Atdgen:


	atd: parser for the syntax of type definitions


	biniou: parser and printer for biniou, a binary extensible data
format


	`yojson <https://github.com/ocaml-community/yojson>`__: parser
and printer for JSON, a widespread text-based data format






Command-line usage


Command-line help

Call atdgen -help for the full list of available options.



Atdgen-json example

$ atdgen -t example.atd
$ atdgen -j -j-std example.atd





Input file example.atd:

type profile = {
  id : string;
  email : string;
  ~email_validated : bool;
  name : string;
  ?real_name : string option;
  ~about_me : string list;
  ?gender : gender option;
  ?date_of_birth : date option;
}

type gender = [ Female | Male ]

type date = {
  year : int;
  month : int;
  day : int;
}





is used to produce files example_t.mli, example_t.ml,
example_j.mli and example_j.ml. This is example_j.mli:

(* Auto-generated from "example.atd" *)


type gender = Example_t.gender

type date = Example_t.date = { year: int; month: int; day: int }

type profile = Example_t.profile = {
  id: string;
  email: string;
  email_validated: bool;
  name: string;
  real_name: string option;
  about_me: string list;
  gender: gender option;
  date_of_birth: date option
}

val write_gender :
  Bi_outbuf.t -> gender -> unit
  (** Output a JSON value of type {!gender}. *)

val string_of_gender :
  ?len:int -> gender -> string
  (** Serialize a value of type {!gender}
      into a JSON string.
      @param len specifies the initial length
                 of the buffer used internally.
                 Default: 1024. *)

val read_gender :
  Yojson.Safe.lexer_state -> Lexing.lexbuf -> gender
  (** Input JSON data of type {!gender}. *)

val gender_of_string :
  string -> gender
  (** Deserialize JSON data of type {!gender}. *)

val write_date :
  Bi_outbuf.t -> date -> unit
  (** Output a JSON value of type {!date}. *)

val string_of_date :
  ?len:int -> date -> string
  (** Serialize a value of type {!date}
      into a JSON string.
      @param len specifies the initial length
                 of the buffer used internally.
                 Default: 1024. *)

val read_date :
  Yojson.Safe.lexer_state -> Lexing.lexbuf -> date
  (** Input JSON data of type {!date}. *)

val date_of_string :
  string -> date
  (** Deserialize JSON data of type {!date}. *)

val write_profile :
  Bi_outbuf.t -> profile -> unit
  (** Output a JSON value of type {!profile}. *)

val string_of_profile :
  ?len:int -> profile -> string
  (** Serialize a value of type {!profile}
      into a JSON string.
      @param len specifies the initial length
                 of the buffer used internally.
                 Default: 1024. *)

val read_profile :
  Yojson.Safe.lexer_state -> Lexing.lexbuf -> profile
  (** Input JSON data of type {!profile}. *)

val profile_of_string :
  string -> profile
  (** Deserialize JSON data of type {!profile}. *)





Module Example_t (files example_t.mli and example_t.ml)
contains all OCaml type definitions that can be used independently from
Biniou or JSON.

For convenience, these definitions are also made available from the
Example_j module whose interface is shown above. Any type name,
record field name or variant constructor can be referred to using either
module. For example, the OCaml expressions
((x : Example_t.date) : Example_j.date) and
x.Example_t.year = x.Example_j.year are both valid.



Atdgen-biniou example

$ atdgen -t example.atd
$ atdgen -b example.atd





Input file example.atd:

type profile = {
  id : string;
  email : string;
  ~email_validated : bool;
  name : string;
  ?real_name : string option;
  ~about_me : string list;
  ?gender : gender option;
  ?date_of_birth : date option;
}

type gender = [ Female | Male ]

type date = {
  year : int;
  month : int;
  day : int;
}





is used to produce files example_t.mli, example_t.ml,
example_b.mli and example_b.ml.

This is example_b.mli:

(* Auto-generated from "example.atd" *)


type gender = Example_t.gender

type date = Example_t.date = { year: int; month: int; day: int }

type profile = Example_t.profile = {
  id: string;
  email: string;
  email_validated: bool;
  name: string;
  real_name: string option;
  about_me: string list;
  gender: gender option;
  date_of_birth: date option
}

(* Writers for type gender *)

val gender_tag : Bi_io.node_tag
  (** Tag used by the writers for type {!gender}.
      Readers may support more than just this tag. *)

val write_untagged_gender :
  Bi_outbuf.t -> gender -> unit
  (** Output an untagged biniou value of type {!gender}. *)

val write_gender :
  Bi_outbuf.t -> gender -> unit
  (** Output a biniou value of type {!gender}. *)

val string_of_gender :
  ?len:int -> gender -> string
  (** Serialize a value of type {!gender} into
      a biniou string. *)

(* Readers for type gender *)

val get_gender_reader :
  Bi_io.node_tag -> (Bi_inbuf.t -> gender)
  (** Return a function that reads an untagged
      biniou value of type {!gender}. *)

val read_gender :
  Bi_inbuf.t -> gender
  (** Input a tagged biniou value of type {!gender}. *)

val gender_of_string :
  ?pos:int -> string -> gender
  (** Deserialize a biniou value of type {!gender}.
      @param pos specifies the position where
                 reading starts. Default: 0. *)

(* Writers for type date *)

val date_tag : Bi_io.node_tag
  (** Tag used by the writers for type {!date}.
      Readers may support more than just this tag. *)

val write_untagged_date :
  Bi_outbuf.t -> date -> unit
  (** Output an untagged biniou value of type {!date}. *)

val write_date :
  Bi_outbuf.t -> date -> unit
  (** Output a biniou value of type {!date}. *)

val string_of_date :
  ?len:int -> date -> string
  (** Serialize a value of type {!date} into
      a biniou string. *)

(* Readers for type date *)

val get_date_reader :
  Bi_io.node_tag -> (Bi_inbuf.t -> date)
  (** Return a function that reads an untagged
      biniou value of type {!date}. *)

val read_date :
  Bi_inbuf.t -> date
  (** Input a tagged biniou value of type {!date}. *)

val date_of_string :
  ?pos:int -> string -> date
  (** Deserialize a biniou value of type {!date}.
      @param pos specifies the position where
                 reading starts. Default: 0. *)

(* Writers for type profile *)

val profile_tag : Bi_io.node_tag
  (** Tag used by the writers for type {!profile}.
      Readers may support more than just this tag. *)

val write_untagged_profile :
  Bi_outbuf.t -> profile -> unit
  (** Output an untagged biniou value of type {!profile}. *)

val write_profile :
  Bi_outbuf.t -> profile -> unit
  (** Output a biniou value of type {!profile}. *)

val string_of_profile :
  ?len:int -> profile -> string
  (** Serialize a value of type {!profile} into
      a biniou string. *)

(* Readers for type profile *)

val get_profile_reader :
  Bi_io.node_tag -> (Bi_inbuf.t -> profile)
  (** Return a function that reads an untagged
      biniou value of type {!profile}. *)

val read_profile :
  Bi_inbuf.t -> profile
  (** Input a tagged biniou value of type {!profile}. *)

val profile_of_string :
  ?pos:int -> string -> profile
  (** Deserialize a biniou value of type {!profile}.
      @param pos specifies the position where
                 reading starts. Default: 0. *)





Module Example_t (files example_t.mli and example_t.ml)
contains all OCaml type definitions that can be used independently from
Biniou or JSON.

For convenience, these definitions are also made available from the
Example_b module whose interface is shown above. Any type name,
record field name or variant constructor can be referred to using either
module. For example, the OCaml expressions
((x : Example_t.date) : Example_b.date) and
x.Example_t.year = x.Example_b.year are both valid.



Validator example

$ atdgen -t example.atd
$ atdgen -v example.atd





Input file example.atd:

type month = int <ocaml valid="fun x -> x >= 1 && x <= 12">
type day = int <ocaml valid="fun x -> x >= 1 && x <= 31">

type date = {
  year : int;
  month : month;
  day : day;
}
  <ocaml validator="Date_util.validate_date">





is used to produce files example_t.mli, example_t.ml,
example_v.mli and example_v.ml. This is example_v.ml,
showing how the user-specified validators are used:

(* Auto-generated from "example.atd" *)


type gender = Example_t.gender

type date = Example_t.date = { year: int; month: int; day: int }

type profile = Example_t.profile = {
  id: string;
  email: string;
  email_validated: bool;
  name: string;
  real_name: string option;
  about_me: string list;
  gender: gender option;
  date_of_birth: date option
}

val validate_gender :
  Atdgen_runtime.Util.Validation.path -> gender -> Atdgen_runtime.Util.Validation.error option
  (** Validate a value of type {!gender}. *)

val create_date :
  year: int ->
  month: int ->
  day: int ->
  unit -> date
  (** Create a record of type {!date}. *)

val validate_date :
  Atdgen_runtime.Util.Validation.path -> date -> Atdgen_runtime.Util.Validation.error option
  (** Validate a value of type {!date}. *)

val create_profile :
  id: string ->
  email: string ->
  ?email_validated: bool ->
  name: string ->
  ?real_name: string ->
  ?about_me: string list ->
  ?gender: gender ->
  ?date_of_birth: date ->
  unit -> profile
  (** Create a record of type {!profile}. *)

val validate_profile :
  Atdgen_runtime.Util.Validation.path -> profile -> Atdgen_runtime.Util.Validation.error option
  (** Validate a value of type {!profile}. *)








Default type mapping

The following table summarizes the default mapping between ATD types and
OCaml, biniou and JSON data types. For each language more
representations are available and are detailed in the next section of
this manual.









	ATD

	OCaml

	JSON

	Biniou





	unit

	unit

	null

	unit



	bool

	bool

	boolean

	bool



	int

	int

	-?(0|[1-9][0-9]*)

	svint



	float

	float

	number

	float64



	string

	string

	string

	string



	'a option

	'a option

	"None" or
["Some", ...]

	numeric variants
(tag 0)



	'a nullable

	'a option

	null or
representation of
'a

	numeric variants
(tag 0)



	'a list

	'a list

	array

	array



	'a shared

	no wrapping

	not implemented

	no longer
supported



	'a wrap

	defined by
annotation,
converted from
'a

	representation of
'a

	representation of
'a



	variants

	polymorphic
variants

	variants

	regular variants



	record

	record

	object

	record



	('a * 'b)

	('a * 'b)

	array

	tuple



	('a)

	'a

	array

	tuple






Notes:


	Null JSON fields by default are treated as if the field was missing.
They can be made meaningful with the keep_nulls flag.


	JSON nulls are used to represent the unit value and is useful for
instanciating parametrized types with “nothing”.


	OCaml floats are written to JSON numbers with either a decimal point
or an exponent such that they are distinguishable from ints, even
though the JSON standard does not require a distinction between the
two.


	The optional values of record fields denoted in ATD by a question
mark are unwrapped or omitted in both biniou and JSON.


	JSON option values and JSON variants are represented in standard JSON
(atdgen -j -j-std) by a single string e.g. "None" or a pair
in which the first element is the name (constructor) e.g.
["Some", 1234]. Yojson also provides a specific syntax for
variants using edgy brackets: <"None">, <"Some": 1234>.


	Biniou field names and variant names other than the option types use
the hash of the ATD field or variant name and cannot currently be
overridden by annotations.


	JSON tuples in standard JSON (atdgen -j -j-std) use the array
notation e.g. ["ABC", 123]. Yojson also provides a specific
syntax for tuples using parentheses, e.g. ("ABC", 123).


	Types defined as abstract are defined in another module.






ATD Annotations


Section json


Field keep_nulls

Position: after record

Values: none, true or false

Semantics: this flag, if present or set to true, indicates that fields
whose JSON value is null should not be treated as if they were
missing. In this case, null is parsed as a normal value, possibly of
a nullable type.

Example: patch semantics

(* Type of the objects stored in our database *)
type t = {
  ?x : int option;
  ?y : int option;
  ?z : int option;
}





(* Type of the requests to modify some of the fields of an object. *)
type t_patch = {
  ?x : int nullable option; (* OCaml type: int option option *)
  ?y : int nullable option;
  ?z : int nullable option;
} <ocaml field_prefix="patch_"> <json keep_nulls>





Let’s consider the following json patch that means “set x to 1,
clear y and keep z as it is”:

{
  "x": 1,
  "y": null
}





It will be parsed by the generated function t_patch_of_string into
the following OCaml value:

{
  patch_x = Some (Some 1);
  patch_y = Some None;
  patch_z = None;
}





Then presumably some code would be written to apply the patch to an
object of type t. Such code is not generated by atdgen at this time.

Available: from atd 1.12



Field name

Position: after field name or variant name

Values: any string making a valid JSON string value

Semantics: specifies an alternate object field name or variant name to
be used by the JSON representation.

Example:

type color = [
    Black <json name="black">
  | White <json name="white">
  | Grey <json name="grey">
]

type profile = {
  id <json name="ID"> : int;
  username : string;
  background_color : color;
}





A valid JSON object of the profile type above is:

{
  "ID": 12345678,
  "username": "kimforever",
  "background_color": "black"
}







Field repr


Association lists

Position: after (string * _) list type

Values: object

Semantics: uses JSON’s object notation to represent association lists.

Example:

type counts = (string * int) list <json repr="object">





A valid JSON object of the counts type above is:

{
  "bob": 3,
  "john": 1408,
  "mary": 450987,
  "peter": 93087
}





Without the annotation <json repr="object">, the data above would be
represented as:

[
  [ "bob", 3 ],
  [ "john", 1408 ],
  [ "mary", 450987 ],
  [ "peter", 93087 ]
]







Floats

Position: after float type

Values: int

Semantics: specifies a float value that must be rounded to the nearest
integer and represented in JSON without a decimal point nor an exponent.

Example:

type unixtime = float <json repr="int">







Ints

Position: after int type

Values: string

Semantics: specifies a int value that must be represented in JSON as
a string.

Example:

type int64 = int <ocaml repr="int64"> <json repr="string">








Field tag_field

Superseded by <json adapter.ocaml="...">. Available since atdgen
1.5.0 and yojson 1.2.0 until atdgen 1.13.

This feature makes it possible to read JSON objects representing
variants that use one field for the tag and another field for the
untagged value of the specific type associated with that tag.

Position: on a record field name, for a field holding a variant type.

Value: name of another JSON field which holds the string representing
the constructor for the variant.

Semantics: The type definition

type t = {
  value <json tag_field="kind">: [ A | B <json name="b"> of int ];
}





covers JSON objects that have an extra field kind which holds either
"A" or "b". Valid JSON values of type t include
{ "kind": "A" } and { "kind": "b", "value": 123 }.



Field untyped

Superseded by <json open_enum> and <json adapter.ocaml="...">.
Available since atdgen 1.10.0 and atd 1.2.0 until atdgen 1.13.

This flag enables parsing of arbitrary variants without prior knowledge
of their type. It is useful for constructing flexible parsers for
extensible serializations. json untyped is compatible with regular
variants, json tag_field variants, default values, and implicit
tag_field constructors.

Position: on a variant constructor with argument type
string * json option (at most one per variant type)

Value: none, true or false

Semantics: The type definition

type v = [
  | A
  | B <json name="b"> of int
  | Unknown <json untyped> of (string * json option)
]





will parse and print "A", ["b", 0], "foo", and
["bar", [null]] in a regular variant context. In the tag_field
type t context in the previous section, v will parse and print
{ "kind": "foo" } and { "kind": "bar", "value": [null] } as well
as the examples previously given.



Field open_enum

Where an enum (finite set of strings) is expected, this flag allows
unexpected strings to be kept under a catch-all constructor rather than
producing an error.

Position: on a variant type comprising exactly one constructor with an
argument. The type of that argument must be string. All other
constructors must have no arguments.

Value: none

For example:

type language = [
  | English
  | Chinese
  | Other of string
] <json open_enum>





maps the json string "Chinese" to the OCaml value `Chinese and
maps "French" to `Other "French".

Available since atdgen 2.0.



Field adapter.ocaml

Json adapters are a mechanism for rearranging json data on-the-fly, so
as to make them compatible with ATD. The programmer must provide an
OCaml module that provides converters between the original json
representation and the ATD-compatible representation. The signature of
the user-provided module must be equal to
Atdgen_runtime.Json_adapter.S, which is:

sig
  (** Convert from original json to ATD-compatible json *)
  val normalize : Yojson.Safe.t -> Yojson.Safe.t

  (** Convert from ATD-compatible json to original json *)
  val restore : Yojson.Safe.t -> Yojson.Safe.t
end





The type Yojson.Safe.t is the type of parsed JSON as provided by
the yojson library.

Position: on a variant type or on a record type.

Value: an OCaml module identifier. Note that
Atdgen_runtime.Json_adapter provides a few modules and functors that
are ready to use. Users are however encouraged to write their own to
suit their needs.

Sample ATD definitions:

type document = [
  | Image of image
  | Text of text
] <json adapter.ocaml="Atdgen_runtime.Json_adapter.Type_field">

type image = {
  url: string;
}

type text = {
  title: string;
  body: string;
}





ATD-compliant json values:


	["Image", {"url": "https://example.com/ocean123.jpg"}]


	["Text", {"title": "Cheeses Around the World", "body": "..."}]




Corresponding json values given by some API:


	{"type": "Image", "url": "https://example.com/ocean123.jpg"}


	{"type": "Text", "title": "Cheeses Around the World", "body": "..."}




The json adapter Type_field that ships with the atdgen runtime takes
care of converting between these two forms. For information on how to
write your own adapter, please consult the documentation for the yojson
library.



Fields adapter.to_ocaml and adapter.from_ocaml

This is an alternative form of specifying adapter.ocaml. It permits to
specify arbitrary code and doesn’t require the “adapter” module to be defined
in advance.

For example, the above usage of adapter.ocaml can be rewritten as
following:

type document = [
  | Image of image
  | Text of text
]
<json
  adapter.to_ocaml="Atdgen_runtime.Json_adapter.normalize_type_field \"type\""
  adapter.from_ocaml="Atdgen_runtime.Json_adapter.restore_type_field \"type\""
>

type image = {
  url: string;
}

type text = {
  title: string;
  body: string;
}








Section biniou


Field repr


Integers

Position: after int type

Values: svint (default), uvint, int8, int16, int32,
int64

Semantics: specifies an alternate type for representing integers. The
default type is svint. The other integers types provided by biniou
are supported by Atdgen-biniou. They have to map to the corresponding
OCaml types in accordance with the following table:








	Biniou type

	Supported OCaml type

	OCaml value range





	svint

	int

	min_int … max_int



	uvint

	int

	0 … max_int, min_int … -1



	int8

	char

	'\000 … '\255



	int16

	int

	0 … 65535



	int32

	int32

	Int32.min_int …
Int32.max_int



	int64

	int64

	Int64.min_int …
Int64.max_int






In addition to the mapping above, if the OCaml type is int, any
biniou integer type can be read into OCaml data regardless of the
declared biniou type.

Example:

type t = {
  id : int
    <ocaml repr="int64">
    <biniou repr="int64">;
  data : string list;
}







Floating-point numbers

Position: after float type

Values: float64 (default), float32

Semantics: float32 allows for a shorter serialized representation of
floats, using 4 bytes instead of 8, with reduced precision. OCaml floats
always use 8 bytes, though.

Example:

type t = {
  lat : float <biniou repr="float32">;
  lon : float <biniou repr="float32">;
}







Arrays and tables

Position: applies to lists of records

Values: array (default), table

Semantics: table uses biniou’s table format instead of a regular
array for serializing OCaml data into biniou. Both formats are supported
for reading into OCaml data regardless of the annotation. The table
format allows

Example:

type item = {
  id : int;
  data : string list;
}

type items = item list <biniou repr="table">









Section ocaml


Field attr

Position: on a type definition, i.e. on the left-handside just before
the equal sign =

Semantics: specifies custom ppx attributes for the type
definition. Overrides any default attributes set globally via
the command line option -type-attr.

Values: the contents of a ppx annotation without the enclosing
[@@ and ]

Example:

type foo <ocaml attr="deriving show,eq"> = int list





translates to

type foo = int list [@@deriving show,eq]







Field predef

Position: left-hand side of a type definition, after the type name

Values: none, true or false

Semantics: this flag indicates that the corresponding OCaml type
definition must be omitted.

Example:

(* Some third-party OCaml code *)
type message = {
  from : string;
  subject : string;
  body : string;
}





(*
   Our own ATD file used for making message_of_string and
   string_of_message functions.
*)
type message <ocaml predef> = {
  from : string;
  subject : string;
  body : string;
}







Field mutable

Position: after a record field name

Values: none, true or false

Semantics: this flag indicates that the corresponding OCaml record field
is mutable.

Example:

type counter = {
  total <ocaml mutable> : int;
  errors <ocaml mutable> : int;
}





translates to the following OCaml definition:

type counter = {
  mutable total : int;
  mutable errors : int;
}







Field default

Position: after a record field name marked with a \~{} symbol or at
the beginning of a tuple field.

Values: any valid OCaml expression

Semantics: specifies an explicit default value for a field of an OCaml
record or tuple, allowing that field to be omitted. Default strings must
be escaped.

Example:

type color = [ Black | White | Rgb of (int * int * int) ]

type ford_t = {
  year : int;
  ~color <ocaml default="`Black"> : color;
  ~name <ocaml default="\"Ford Model T\""> : string;
}

type point = (int * int * <ocaml default="0"> : int)







Field from

Position: left-hand side of a type definition, after the type name

Values: OCaml module name without the _t, _b, _j or _v
suffix. This can be also seen as the name of the original ATD file,
without the .atd extension and capitalized like an OCaml module
name.

Semantics: specifies the base name of the OCaml modules where the type
and values coming with that type are defined.

It is useful for ATD types defined as abstract and for types
annotated as predefined using the annotation <ocaml predef>. In both
cases, the missing definitions must be provided by modules composed of
the base name and the standard suffix assumed by Atdgen which is _t,
_b, _j or _v.

Example: First input file part1.atd:

type point = { x : int; y : int }





Second input file part2.atd depending on the first one:

type point <ocaml from="Part1"> = abstract
type points = point list





To use a different type name than defined in the Part1 module, add a
t field declaration to the annotation which refers to the original
type name:

type point_xy <ocaml from="Part1" t="point"> = abstract
type points = point_xy list







Field module


Using a custom wrapper

Using the built-in wrap constructor, it is possible to add a layer
of abstraction on top of the concrete structure used for serialization.

Position: after a wrap type constructor

Values: OCaml module name

A common use case is to parse strings used as unique identifiers and
wrap the result into an abstract type. Our OCaml module Uid needs to
provide a type t, and two functions wrap and unwrap as
follows:

type t
val wrap : string -> t
val unwrap : t -> string





Given that Uid OCaml module, we can write the following ATD
definition:

type uid = string wrap <ocaml module="Uid">





Other languages than OCaml using the same ATD type definitions may or
may not add their own abstract layer. Without an annotation, the
wrap construct has no effect on the value being wrapped, i.e.
wrap and unwrap default to the identity function.

It is also possible to define t, wrap, and unwrap inline:

type uid = string wrap <ocaml t="Uid.t"
                              wrap="Uid.wrap"
                              unwrap="Uid.unwrap">





This can be useful for very simple validation:

type uid = string wrap
  <ocaml wrap="fun s ->
                 if String.length s <> 16 then
                   failwith \"Invalid user ID\";
                 s"
  >







Importing an external type definition

In most cases since Atdgen 1.2.0 module annotations are deprecated
in favor of from annotations previously described.

Position: left-hand side of a type definition, after the type name

Values: OCaml module name

Semantics: specifies the OCaml module where the type and values coming
with that type are defined. It is useful for ATD types defined as
abstract and for types annotated as predefined using the annotation
<ocaml predef>. In both cases, the missing definitions can be
provided either by globally opening an OCaml module with an OCaml
directive or by specifying locally the name of the module to use.

The latter approach is recommended because it allows to create type and
value aliases in the OCaml module being generated. It results in a
complete module signature regardless of the external nature of some
items.

Example: Input file example.atd:

type document <ocaml module="Doc"> = abstract

type color <ocaml predef module="Color"> =
  [ Black | White ] <ocaml repr="classic">

type point <ocaml predef module="Point"> = {
  x : float;
  y : float;
}





gives the following OCaml type definitions (file example.mli):

type document = Doc.document

type color = Color.color =  Black | White

type point = Point.point = { x: float; y: float }





Now for instance Example.Black and Color.Black can be used
interchangeably in other modules.




Field t


Using a custom wrapper

Specifies the OCaml type of an abstract wrap construct, possibly
overriding the default M.t if M is the module where the
wrap and unwrap functions are found.

Position: after a wrap type constructor

Values: OCaml type name

Example:

type uid = string wrap <ocaml module="Uid" t="Uid.uid">





is equivalent to:

type uid = string wrap <ocaml t="Uid.uid" wrap="Uid.wrap" unwrap="Uid.unwrap">







Importing an external type definition

Position: left-hand side of a type definition, after the type name. Must
be used in conjunction with a module field.

Values: OCaml type name as found in an external module.

Semantics: This option allows to specify the name of an OCaml type
defined in an external module.

It is useful when the type needs to be renamed because its original name
is already in use or not enough informative. Typically we may want to
give the name foo to a type originally defined in OCaml as
Foo.t.

Example:

type foo <ocaml_biniou module="Foo" t="t"> = abstract
type bar <ocaml_biniou module="Bar" t="t"> = abstract
type t <ocaml_biniou module="Baz"> = abstract





allows local type names to be unique and gives the following OCaml type
definitions:

type foo = Foo.t
type bar = Bar.t
type t = Baz.t








Fields wrap and unwrap

See “Using a custom wrapper” under section ocaml, fields
module and t.



Field field_prefix

Position: record type expression

Values: any string making a valid prefix for OCaml record field names

Semantics: specifies a prefix to be prepended to each field of the OCaml
definition of the record. Overridden by alternate field names defined on
a per-field basis.

Example:

type point2 = {
  x : int;
  y : int;
} <ocaml field_prefix="p2_">





gives the following OCaml type definition:

type point2 = {
  p2_x : int;
  p2_y : int;
}







Field name

Position: after record field name or variant name

Values: any string making a valid OCaml record field name or variant
name

Semantics: specifies an alternate record field name or variant names to
be used in OCaml.

Example:

type color = [
    Black <ocaml name="Grey0">
  | White <ocaml name="Grey100">
  | Grey <ocaml name="Grey50">
]

type profile = {
  id <ocaml name="profile_id"> : int;
  username : string;
}





gives the following OCaml type definitions:

type color = [
    `Grey0
  | `Grey100
  | `Grey50
]

type profile = {
  profile_id : int;
  username : string;
}







Field repr


Integers

Position: after int type

Values: char, int32, int64, float

Semantics: specifies an alternate type for representing integers. The
default type is int, but char, int32, int64 or float
can be used instead.

The three types char, int32 and int64 are supported by both
Atdgen-biniou and Atdgen-json but Atdgen-biniou currently requires that
they map to the corresponding fixed-width types provided by the biniou
format.

The type float is only supported in conjunction with JSON and is
useful when an OCaml float is used to represent an integral value, such
as a time in seconds returned by Unix.time(). When converted into
JSON, floats are rounded to the nearest integer.

Example:

type t = {
  id : int
    <ocaml repr="int64">
    <biniou repr="int64">;
  data : string list;
}







Lists and arrays

Position: after a list type

Values: array

Semantics: maps to OCaml’s array type instead of list.

Example:

type t = {
  id : int;
  data : string list
    <ocaml repr="array">;
}







Sum types

Position: after a sum type (denoted by square brackets)

Values: classic

Semantics: maps to OCaml’s classic variants instead of polymorphic
variants.

Example:

type fruit = [ Apple | Orange ] <ocaml repr="classic">





translates to the following OCaml type definition:

type fruit = Apple | Orange







Shared values (obsolete)

Position: after a shared type

This feature is obsolete and was last supported by atdgen 1.3.1.




Field valid

Since atdgen 1.6.0.

Position: after any type expression except type variables

Values: OCaml function that takes one argument of the given type and
returns a bool

Semantics: atdgen -v produces for each type named t a function
validate_t:

val validate_t : Atdgen_runtime.Util.Validation.path -> t -> Atdgen_runtime.Util.Validation.error option





Such a function returns None if and only if the value and all of its
subnodes pass all the validators specified by annotations of the form
<ocaml validator="..."> or <ocaml valid="..."> (at most one per
node).

Example:

type positive = int <ocaml validator="fun x -> x > 0">

type point = {
  x : positive;
  y : positive;
  z : int;
}
  <ocaml valid="Point.validate">
  (* Some validating function from a user-defined module Point *)





The generated validate_point function calls the validator for the
containing object first (Point.validate) and continues on its fields
x then y until an error is returned.

match validate_point [] { x = 1; y = 0; z = 1 } with
| None -> ()
| Some e ->
    Printf.eprintf "Error: %s\n%!"
      (Atdgen_runtime.Util.Validation.string_of_error e)





The above code prints the following error message:

Error: Validation error; path = <root>.y





In order to customize the error message and print the faulty value, use
validator instead of valid, as described next.



Field validator

This is a variant of the valid annotation that allows full control
over the error message that gets generated in case of an error.

Position: after any type expression except type variables

Values: OCaml function that takes the path in current JSON structure and
the object to validate, and returns an optional error.

Semantics: atdgen -v produces for each type named t a function
validate_t:

val validate_t : Atdgen_runtime.Util.Validation.path -> t -> Atdgen_runtime.Util.Validation.error option





Such a function returns None if and only if the value and all of its
subnodes pass all the validators specified by annotations of the form
<ocaml validator="..."> or <ocaml valid="..."> (at most one per
node).

Example:

type positive = int <ocaml validator="
  fun path x ->
    if x > 0 then None
    else
      Some (
        Atdgen_runtime.Util.Validation.error
          ~msg: (\"Not a positive integer: \" ^ string_of_int x)
          path
      )
">

type point = {
  x : positive;
  y : positive;
  z : int;
}
  <ocaml validator="Point.validate">
  (* Some validating function from a user-defined module Point *)





The following user code

match Toto_v.validate_point [] { x = 1; y = 0; z = 1 } with
| None -> ()
| Some e ->
    Printf.eprintf "Error: %s\n%!"
      (Atdgen_runtime.Util.Validation.string_of_error e)





results in printing:

Error: Validation error: Not a positive integer: 0; path = <root>.y








Section ocaml_biniou

Section ocaml_biniou takes precedence over section ocaml in
Biniou mode (-b) for the following fields:


	predef (see section ocaml, field predef)


	module (see section ocaml, field module)


	t (see section ocaml.t)






Section ocaml_json (obsolete)

Section ocaml_json takes precedence over section ocaml in JSON
mode (-json or -j) for the following fields:


	predef (see section ocaml, field predef)


	module (see section ocaml, field module)


	t (see section ocaml, field t)




Please note that atdgen -json is now deprecated in favor of
atdgen -j (json) and atdgen -t (types). The latter is in charge
of producing type definitions independently from JSON and will ignore
<ocaml_json ...> annotations, making them almost useless. The
equivalent <ocaml ...> annotations are almost always preferable.

Example:

This example shows how to parse a field into a generic tree of type
Yojson.Safe.t rather than a value of a specialized OCaml type.

type dyn <ocaml_json module="Yojson.Safe" t="json"> = abstract

type t = { foo: int; bar: dyn }





translates to the following OCaml type definitions:

type dyn = Yojson.Safe.t

type t = { foo : int; bar : dyn }





Sample OCaml value of type t:

{
  foo = 12345;
  bar =
    `List [
      `Int 12;
      `String "abc";
      `Assoc [
        "x", `Float 3.14;
        "y", `Float 0.0;
        "color", `List [ `Float 0.3; `Float 0.0; `Float 1.0 ]
      ]
    ]
}





Corresponding JSON data as obtained with string_of_t:

{"foo":12345,"bar":[12,"abc",{"x":3.14,"y":0.0,"color":[0.3,0.0,1.0]}]}







Section doc

Unlike comments, doc annotations are meant to be propagated into the
generated source code. This is useful for making generated interface
files readable without having to consult the original ATD file.

Generated source code comments can comply to a standard format and take
advantage of documentation generators such as javadoc or ocamldoc.


Field text

Position:


	after the type name on the left-hand side of a type definition


	after the type expression on the right hand of a type definition (but
not after any type expression)


	after record field names


	after variant names




Values: UTF-8-encoded text using a minimalistic markup language

Semantics: The markup language is defined as follows:


	Blank lines separate paragraphs.


	{{ }} can be used to enclose inline verbatim text.


	{{{ }}} can be used to enclose verbatim text where whitespace is
preserved.


	The backslash character is used to escape special character
sequences. In regular paragraph mode the special sequences are \,
{{ and {{{. In inline verbatim text, special sequences are
\ and }}. In verbatim text, special sequences are \ and
}}}.




Example: The following is an example demonstrating the use of doc
annotations generated using:

$ atdgen -t ocamldoc_example.atd





Input file ocamldoc_example.atd:

<doc text="This is the title">

type point = {
  x <doc text="The first coordinate">: float;
  y <doc text="The second coordinate">: float;
}
  <doc text="
The type of a point. A value {{p}} can be created as follows:
{{{
let p = { x = 1.2; y = 5.0 }
}}}
">

type color = [
 | Black <doc text="Same as {{RGB (0,0,0)}}">
 | White <doc text="Same as {{RGB (255, 255, 255)}}">
 | RGB
     <doc text="Red, green, blue components">
     of (int * int * int)
]





translates using atdgen -t ocamldoc_example.atd into the following
OCaml interface file ocamldoc_example_t.mli with ocamldoc-compliant
comments:

(* Auto-generated from "ocamldoc_example.atd" *)


(** This is the title *)

(**
  The type of a point. A value [p] can be created as follows:

{v
let p = \{ x = 1.2; y = 5.0 \}
v}
*)
type point = {
  x: float (** The first coordinate *);
  y: float (** The second coordinate *)
}

type color = [
    `Black (** Same as [RGB (0,0,0)] *)
  | `White (** Same as [RGB (255, 255, 255)] *)
  | `RGB of (int * int * int) (** Red, green, blue components *)
]









Atdgen runtime library

A library named atdgen-runtime [https://github.com/ahrefs/atd/tree/master/atdgen-runtime/src] is installed by the standard installation
process. Only a fraction of it is officially supported and documented.

Modules intended for all users are:


	Util


	Json_adapter




The other modules exported by the library are used directly by
generated code. Tool developers may use them but we don’t guarantee
strong compatibility across releases.





          

      

      

    

  

    
      
          
            
  
Tutorial


What is atdgen?

Atdgen is a tool that derives OCaml boilerplate code from type definitions.
Currently it provides support for:


	JSON [http://json.org/] serialization and deserialization.


	Biniou [https://raw.githubusercontent.com/ahrefs/atd/master/doc/biniou-format.txt] serialization and deserialization.
Biniou is a binary format extensible like JSON but more compact
and faster to process.


	Convenience functions for creating and validating OCaml data.






What are the advantages of atdgen?

Atdgen has a number of advantages over its predecessor json-static
which was based on Camlp4:


	produces explicit interfaces which describe what is available to
the user (.mli files).


	produces readable OCaml code that can be easily reviewed
(.ml files).


	produces fast code, 3x faster than json-static.


	runs fast, keeping build times low.


	same ATD definitions can be used to generate code other than
OCaml. See for instance
atdj
which generates Java classes for JSON IO.
Auto-generating GUI widgets from type definitions is another
popular use of annotated type definitions. The implementation of
such code generators is facilitated by the
atd library.






Prerequisites

This tutorial assumes that you are using atdgen version 1.5.0 or above.
The following command tells you which version you are using:

$ atdgen -version
1.5.0





The recommended way of installing atdgen and all its dependencies is with
opam [http://opam.ocamlpro.com/]:

$ opam install atdgen







Getting started

From now on we assume that atdgen 1.5.0 or above is installed properly.

$ atdgen -version
1.5.0





Type definitions are placed in a .atd file (hello.atd):

type date = {
  year : int;
  month : int;
  day : int;
}





Our handwritten OCaml program is hello.ml:

open Hello_t
let () =
  let date = { year = 1970; month = 1; day = 1 } in
  print_endline (Hello_j.string_of_date date)





We produce OCaml code from the type definitions using atdgen:

$ atdgen -t hello.atd     # produces OCaml type definitions
$ atdgen -j hello.atd     # produces OCaml code dealing with JSON





We now have _t and _j files produced by atdgen -t and atdgen -j
respectively:

$ ls
hello.atd  hello.ml  hello_j.ml  hello_j.mli  hello_t.ml  hello_t.mli





We compile all .mli and .ml files:

$ ocamlfind ocamlc -c hello_t.mli -package atdgen
$ ocamlfind ocamlc -c hello_j.mli -package atdgen
$ ocamlfind ocamlopt -c hello_t.ml -package atdgen
$ ocamlfind ocamlopt -c hello_j.ml -package atdgen
$ ocamlfind ocamlopt -c hello.ml -package atdgen
$ ocamlfind ocamlopt -o hello hello_t.cmx hello_j.cmx hello.cmx -package atdgen -linkpkg





And finally we run our hello program:

$ ./hello
{"year":1970,"month":1,"day":1}





Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/hello]



Inspecting and pretty-printing JSON

Input JSON data:

$ cat single.json
[1234,"abcde",{"start_date":{"year":1970,"month":1,"day":1},
"end_date":{"year":1980,"month":1,"day":1}}]





Pretty-printed JSON can be produced with the ydump command:

$ ydump single.json
[
  1234,
  "abcde",
  {
    "start_date": { "year": 1970, "month": 1, "day": 1 },
    "end_date": { "year": 1980, "month": 1, "day": 1 }
  }
]





Multiple JSON objects separated by whitespace, typically one JSON object
per line, can also be pretty-printed with ydump. Input:

$ cat stream.json
[1234,"abcde",{"start_date":{"year":1970,"month":1,"day":1},
"end_date":{"year":1980,"month":1,"day":1}}]
[1,"a",{}]





In this case the -s option is required:

$ ydump -s stream.json
[
  1234,
  "abcde",
  {
    "start_date": { "year": 1970, "month": 1, "day": 1 },
    "end_date": { "year": 1980, "month": 1, "day": 1 }
  }
]
[ 1, "a", {} ]





From an OCaml program, pretty-printing can be done with Yojson.Safe.prettify
which has the following signature:

val prettify : string -> string





We wrote a tiny program that simply calls the prettify function on
some predefined JSON data (file prettify.ml):

let json =
"[1234,\"abcde\",{\"start_date\":{\"year\":1970,\"month\":1,\"day\":1},
\"end_date\":{\"year\":1980,\"month\":1,\"day\":1}}]"

let () = print_endline (Yojson.Safe.prettify json)





We now compile and run prettify.ml:

$ ocamlfind ocamlopt -o prettify prettify.ml -package atdgen -linkpkg
$ ./prettify
[
  1234,
  "abcde",
  {
    "start_date": { "year": 1970, "month": 1, "day": 1 },
    "end_date": { "year": 1980, "month": 1, "day": 1 }
  }
]





Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/pretty-json]



Inspecting biniou data

Biniou is a binary format that can be displayed as text using a generic command
called bdump. The only practical difficulty is to recover the original field
names and variant names which are stored as 31-bit hashes. Unhashing them is
done by consulting a dictionary (list of words) maintained by the user.

Let’s first produce a sample data file tree.dat containing the
biniou representation of a binary tree. In the same program
we will also demonstrate how to render biniou data into text from an
OCaml program.

Here is the ATD file defining our tree type (file tree.atd):

type tree = [
  | Empty
  | Node of (tree * int * tree)
]





This is our OCaml program (file tree.ml):

open Printf

(* sample value *)
let tree : Tree_t.tree =
  `Node (
    `Node (`Empty, 1, `Empty),
    2,
    `Node (
      `Node (`Empty, 3, `Empty),
      4,
      `Node (`Empty, 5, `Empty)
    )
  )

let () =
  (* write sample value to file *)
  let fname = "tree.dat" in
  Atdgen_runtime.Util.Biniou.to_file Tree_b.write_tree fname tree;

  (* write sample value to string *)
  let s = Tree_b.string_of_tree tree in
  printf "raw value (saved as %s):\n%S\n" fname s;
  printf "length: %i\n" (String.length s);

  printf "pretty-printed value (without dictionary):\n";
  print_endline (Bi_io.view s);

  printf "pretty-printed value (with dictionary):\n";
  let unhash = Bi_io.make_unhash ["Empty"; "Node"; "foo"; "bar" ] in
  print_endline (Bi_io.view ~unhash s)





Compilation:

$ atdgen -t tree.atd
$ atdgen -b tree.atd
$ ocamlfind ocamlopt -o tree \
    tree_t.mli tree_t.ml tree_b.mli tree_b.ml tree.ml \
    -package atdgen -linkpkg





Running the program:

$ ./tree
raw value (saved as tree.dat):
"\023\179\2276\"\020\003\023\179\2276\"\020\003\023\003\007\170m\017\002\023\003\007\170m\017\004\023\179\2276\"\020\003\023\179\2276\"\020\003\023\003\007\170m\017\006\023\003\007\170m\017\b\023\179\2276\"\020\003\023\003\007\170m\017\n\023\003\007\170m"
length: 75
pretty-printed value (without dictionary):
<#33e33622:
  (<#33e33622: (<#0307aa6d>, 1, <#0307aa6d>)>,
    2,
    <#33e33622:
      (<#33e33622: (<#0307aa6d>, 3, <#0307aa6d>)>,
        4,
        <#33e33622: (<#0307aa6d>, 5, <#0307aa6d>)>)>)>
pretty-printed value (with dictionary):
<"Node":
  (<"Node": (<"Empty">, 1, <"Empty">)>,
    2,
    <"Node":
      (<"Node": (<"Empty">, 3, <"Empty">)>,
        4,
        <"Node": (<"Empty">, 5, <"Empty">)>)>)>





Now let’s see how to pretty-print any biniou data from the command line.
Our sample data are now in file tree.dat:

$ ls -l tree.dat
-rw-r--r-- 1 martin martin 75 Apr 17 01:46 tree.dat





We use the command bdump to render our sample biniou data as text:

$ bdump tree.dat
<#33e33622:
  (<#33e33622: (<#0307aa6d>, 1, <#0307aa6d>)>,
    2,
    <#33e33622:
      (<#33e33622: (<#0307aa6d>, 3, <#0307aa6d>)>,
        4,
        <#33e33622: (<#0307aa6d>, 5, <#0307aa6d>)>)>)>





We got hashes for the variant names Empty and Node. Let’s add them to the
dictionary:

$ bdump -w Empty,Node tree.dat
<"Node":
  (<"Node": (<"Empty">, 1, <"Empty">)>,
    2,
    <"Node":
      (<"Node": (<"Empty">, 3, <"Empty">)>,
        4,
        <"Node": (<"Empty">, 5, <"Empty">)>)>)>





bdump remembers the dictionary so we don’t have to pass the -w option
anymore (for this user on this machine). The following now works:

$ bdump tree.dat
<"Node":
  (<"Node": (<"Empty">, 1, <"Empty">)>,
    2,
    <"Node":
      (<"Node": (<"Empty">, 3, <"Empty">)>,
        4,
        <"Node": (<"Empty">, 5, <"Empty">)>)>)>





Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/inspect-biniou]



Optional fields and default values

Although OCaml records do not support optional fields, both the JSON
and biniou formats make it possible to omit certain fields on a
per-record basis.

For example the JSON record { “x”: 0, “y”: 0 } can be more
compactly written as {} if the reader knows the default values for
the missing fields x and y. Here is the corresponding type
definition:

type vector_v1 = { ~x: int; ~y: int }





~x means that field x supports a default value. Since we do not specify
the default value ourselves, the built-in default is used, which is 0.

If we want the default to be something else than 0, we just have to specify it
as follows:

type vector_v2 = {
  ~x <ocaml default="1">: int; (* default x is 1 *)
  ~y: int;                     (* default y is 0 *)
}





It is also possible to specify optional fields without a default value. For
example, let’s add an optional z field:

type vector_v3 = {
  ~x: int;
  ~y: int;
  ?z: int option;
}





The following two examples are valid JSON representations of data of type
vector_v3:

{ "x": 2, "y": 2, "z": 3 }  // OCaml: { x = 2; y = 2; z = Some 3 }





{ "x": 2, "y": 2 }          // OCaml: { x = 2; y = 2; z = None }





By default, JSON fields whose value is null are treated
as missing fields. The following two JSON objects are therefore equivalent:

{ "x": 2, "y": 2, "z": null }
{ "x": 2, "y": 2 }





Note also the difference between ?z: int option and ~z: int option:

type vector_v4 = {
  ~x: int;
  ~y: int;
  ~z: int option;  (* no unwrapping of the JSON field value! *)
}





Here are valid values of type vector_v4, showing that it is usually not what
is intended:

{ "x": 2, "y": 2, "z": [ "Some", 3 ] }





{ "x": 2, "y": 2, "z": "None" }





{ "x": 2, "y": 2 }







Smooth protocol upgrades

Problem: you have a production system that uses a specific JSON or biniou
format. It may be data files or a client-server pair. You now want to add a
field to a record type or to add a case to a variant type.

Both JSON and biniou allow extra record fields. If the consumer does not know
how to deal with the extra field, the default behavior is to happily ignore it.


Adding or removing an optional record field

type t = {
  x: int;
  y: int;
}





Same .atd source file, edited:

type t = {
  x: int;
  y: int;
  ~z: int; (* new field *)
}






	Upgrade producers and consumers in any order


	Converting old data is not required nor useful






Adding a required record field

type t = {
  x: int;
  y: int;
}





Same .atd source file, edited:

type t = {
  x: int;
  y: int;
  z: int; (* new field *)
}






	Upgrade all producers before the consumers


	Converting old data requires special-purpose hand-written code






Removing a required record field


	Upgrade all consumers before the producers


	Converting old data is not required but may save some storage space
(just read and re^write each record using the new type)






Adding a variant case

type t = [ A | B ]





Same .atd source file, edited:

type t = [ A | B | C ]






	Upgrade all consumers before the producers


	Converting old data is not required and would have no effect






Removing a variant case


	Upgrade all producers before the consumers


	Converting old data requires special^purpose hand^written code






Avoiding future problems


	In doubt, use records rather than tuples because it makes it possible to add
or remove any field or to reorder them.


	Do not hesitate to create variant types with only one case or records with
only one field if you think they might be extended later.







Data validation

Atdgen can be used to produce data validators for all types defined in an ATD
file, based on user-given validators specified only for certain types. A simple
example is:

type t = string <ocaml valid="fun s -> String.length s >= 8"> option





As we can see from this example, the validation function is specified using the
annotation <ocaml valid="p">, where p is a predicate p : t -> bool,
returning true when the value of type t is valid and false
otherwise.

Calling atdgen -v on a file containing this specification will produce
a validation function equivalent to the following implementation:

let validate_t path x =
  match x with
  | None -> None
  | Some x ->
      let msg = "Failed check by fun s -> String.length s >= 8" in
      if (fun s -> String.length s >= 8) x
      then None
      else Some {error_path = path; error_msg = msg}





Let’s consider this particular example as an illustration of the general shape
of generated validation functions.

The function takes two arguments: the first, path, is a list indicating
where the second, x, was encountered. As specified by our example .atd
code above, x has type t option.

The body of the validation function does two things:

1. it checks the value of x against the validation function specified in our
.atd file, namely, checking whether there is Some s, and verifying that
s is at least 8 characters long if so
2. in the event that the validation check fails, it constructs an appropriate
error record.

In general, generated validation functions for a type t have a type
equivalent to validate_t : path -> t -> error option, where the path
gives the current location in a data structure and the error is a record of
the location of, and reason for, validation failure.

A return value of None indicates successful validation, while Some
{error_path; error_msg} tells us where and why validation failed.

Let’s now consider a more realistic example with complex validators defined in a
separate .ml file. We will define a data structure representing a section of
a resume recording work experience. We will also define validation functions
that can enforce certain properties to protect against errors and junk data.

In the course of this example, we will manually create the following 3 source
files:


	resume.atd: contains the type definitions with annotations


	resume_util.ml: contains our handwritten validators


	resume.ml: is our main program that creates data and checks it using our
generated validation functions.




After generating additional code with atdgen, we will end up with the
following OCaml modules:


	Resume_t: generated into resume_t.ml by atdgen -t resume.atd, this
provides our OCaml type definitions


	Resume_util: written manually in resume_util.ml, this depends on
Resume_t and provides validators we will use in resume.atd


	Resume_v: generated into resume_v.ml by atdgen -v resume.atd, this
depends on Resume_util and Resume_t and provides a validation function
for each type


	Resume_j: generated into resume_j.ml by atdgen -j resume.atd, this
provides functions to serialize and deserialize data in and out of JSON.


	Resume: written manually in resume.ml, this depends on Resume_v,
and Resume_t, and makes use of the generated types and validation
functions.




To begin, we specify type definitions for a data structure representing a resume
in resume.atd:

type text = string <ocaml valid="Resume_util.validate_some_text">

type date = {
  year : int;
  month : int;
  day : int;
} <ocaml valid="Resume_util.validate_date">

type job = {
  company : text;
  title : text;
  start_date : date;
  ?end_date : date option;
} <ocaml valid="Resume_util.validate_job">

type work_experience = job list





We can now call atdgen -t resume.atd to generate our Resume_t module in
resume_t.ml, providing our data types. Using these data types, we’ll define
the following handwritten validators in resume_util.ml (note that we’ve
already referred to these validators in resume.atd):

open Resume_t

let ascii_printable c =
  let n = Char.code c in
  n >= 32 && n <= 127

(*
  Check that string is not empty and contains only ASCII printable
  characters (for the sake of the example; we use UTF-8 these days)
*)
let validate_some_text s =
  s <> "" &&
    try
      String.iter (fun c -> if not (ascii_printable c) then raise Exit) s;
      true
    with Exit ->
      false

(*
  Check that the combination of year, month and day exists in the
  Gregorian calendar.
*)
let validate_date x =
  let y = x.year in
  let m = x.month in
  let d = x.day in
  m >= 1 && m <= 12 && d >= 1 &&
  (let dmax =
    match m with
        2 ->
          if y mod 4 = 0 && not (y mod 100 = 0) || y mod 400 = 0 then 29
          else 28
      | 1 | 3 | 5 | 7 | 8 | 10 | 12 -> 31
      | _ -> 30
  in
  d <= dmax)

(* Compare dates chronologically *)
let compare_date a b =
  let c = compare a.year b.year in
  if c <> 0 then c
  else
    let c = compare a.month b.month in
    if c <> 0 then c
    else compare a.day b.day

(* Check that the end_date, when defined, is not earlier than the start_date *)
let validate_job x =
  match x.end_date with
      None -> true
    | Some end_date ->
        compare_date x.start_date end_date <= 0





After we call atdgen -v resume.atd, the module Resume_v will be
generated in resume_v.ml, providing the function
validate_work_experience . We can then use this function, along with the
generated Resume_j in the following program written in resume.ml:

let check_experience x =
  let is_valid = match Resume_v.validate_work_experience [] x with
    | None -> false
    | _ -> true
  in
  Printf.printf "%s:\n%s\n"
    (if is_valid then "VALID" else "INVALID")
    (Yojson.Safe.prettify (Resume_j.string_of_work_experience x))

let () =
  (* one valid date *)
  let valid = { Resume_t.year = 2000; month = 2; day = 29 } in
  (* one invalid date *)
  let invalid = { Resume_t.year = 1900; month = 0; day = 0 } in
  (* two more valid dates, created with Resume_v.create_date *)
  let date1 = { Resume_t.year = 2005; month = 8; day = 1 } in
  let date2 = { Resume_t.year = 2006; month = 3; day = 22 } in

  let job = {
    Resume_t.company = "Acme Corp.";
    title = "Tester";
    start_date = date1;
    end_date = Some date2;
  }
  in
  let valid_job = { job with Resume_t.start_date = valid } in
  let invalid_job = { job with Resume_t.end_date = Some invalid } in
  let valid_experience = [ job; valid_job ] in
  let invalid_experience = [ job; invalid_job ] in
  check_experience valid_experience;
  check_experience invalid_experience





Output:

VALID:
[
  {
    "company": "Acme Corp.",
    "title": "Tester",
    "start_date": { "year": 2005, "month": 8, "day": 1 },
    "end_date": { "year": 2006, "month": 3, "day": 22 }
  },
  {
    "company": "Acme Corp.",
    "title": "Tester",
    "start_date": { "year": 2000, "month": 2, "day": 29 },
    "end_date": { "year": 2006, "month": 3, "day": 22 }
  }
]
INVALID:
[
  {
    "company": "Acme Corp.",
    "title": "Tester",
    "start_date": { "year": 2005, "month": 8, "day": 1 },
    "end_date": { "year": 2006, "month": 3, "day": 22 }
  },
  {
    "company": "Acme Corp.",
    "title": "Tester",
    "start_date": { "year": 2005, "month": 8, "day": 1 },
    "end_date": { "year": 1900, "month": 0, "day": 0 }
  }





Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/validate]



Modularity: referring to type definitions from another ATD file

It is possible to define types that depend on types defined in other .atd
files. The example below is self-explanatory.

part1.atd:

type t = { x : int; y : int }





part2.atd:

type t1 <ocaml from="Part1" t="t"> = abstract
    (*
      Imports type t defined in file part1.atd.
      The local name is t1. Because the local name (t1) is different from the
      original name (t), we must specify the original name using t=.
    *)

type t2 = t1 list





part3.atd:

type t2 <ocaml from="Part2"> = abstract

type t3 = {
  name : string;
  ?data : t2 option;
}





main.ml:

let v = {
  Part3_t.name = "foo";
  data = Some [
    { Part1_t.x = 1; y = 2 };
    { Part1_t.x = 3; y = 4 };
  ]
}

let () =
  Atdgen_runtime.Util.Json.to_channel Part3_j.write_t3 stdout v;
  print_newline ()





Output:

{"name":"foo","data":[{"x":1,"y":2},{"x":3,"y":4}]}





Source code for this section [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/modularity]



Managing JSON configuration files

JSON makes a good format for configuration files because it is human-readable,
easy to modify programmatically and widespread. Here is an example of how to use
atdgen to manage config files.


	Specifying defaults is done in the .atd file. See section [Optional fields
and default values] for details on how to do that.


	Auto-generating a template config file with default values: a sample value
in the OCaml world needs to be created but only fields without default need to
be specified.


	Describing the format is achieved by embedding the .atd type definitions
in the OCaml program and printing it out on request.


	Loading a config file and reporting illegal fields is achieved using the
JSON deserializers produced by atdgen -j. Option -j-strict-fields
ensures the misspelled field names are not ignored but reported as errors.


	Reindenting a config file is achieved by the pretty-printing function
Yojson.Safe.prettify that takes a JSON string and returns an equivalent
JSON string.


	Showing implicit (default) settings is achieved by passing the
-j-defaults option to atdgen. The OCaml config data is then serialized
into JSON containing all fields, including those whose value is the default.




The example uses the following type definitions:

type config = {
  title : string;
  ?description : string option;
  ~timeout <ocaml default="10"> : int;
  ~credentials : param list
    <ocaml valid="fun l ->
                    l <> [] || failwith \"missing credentials\"">;
}

type param = {
  name : string
    <ocaml valid="fun s -> s <> \"\"">;
  key : string
    <ocaml valid="fun s -> String.length s = 16">;
}





Our program will perform the following actions:

$ ./config -template
{
  "title": "",
  "timeout": 10,
  "credentials": [ { "name": "foo", "key": "0123456789abcdef" } ]
}

$ ./config -format
type config = {
  title : string;
  ?description : string option;
  ~timeout <ocaml default="10"> : int;
  ~credentials : param list
    <ocaml valid="fun l ->
                    l <> [] || failwith \"missing credentials\"">;
}

type param = {
  name : string
    <ocaml valid="fun s -> s <> \"\"">;
  key : string
    <ocaml valid="fun s -> String.length s = 16">;
}

$ cat sample-config.json
{
  "title": "Example",
  "credentials": [
    {
      "name": "joeuser",
      "key": "db7c0877bdef3016"
    },
    {
      "name": "tester",
      "key": "09871ff387ac2b10"
    }
  ]
}

$ ./config -validate sample-config.json
{
  "title": "Example",
  "timeout": 10,
  "credentials": [
    { "name": "joeuser", "key": "db7c0877bdef3016" },
    { "name": "tester", "key": "09871ff387ac2b10" }
  ]
}





This is our demo.sh script that builds and runs our example
program called config:

#! /bin/sh -e

set -x

# Embed the contents of the .atd file into our OCaml program
echo 'let contents = "\' > config_atd.ml
sed -e 's/\([\\"]\)/\\\1/g' config.atd >> config_atd.ml
echo '"' >> config_atd.ml

# Derive OCaml type definitions from .atd file
atdgen -t config.atd

# Derive JSON-related functions from .atd file
atdgen -j -j-defaults -j-strict-fields config.atd

# Derive validator from .atd file
atdgen -v config.atd

# Compile the OCaml program
ocamlfind ocamlopt -o config \
  config_t.mli config_t.ml config_j.mli config_j.ml config_v.mli config_v.ml \
  config_atd.ml config.ml -package atdgen -linkpkg

# Output a sample config
./config -template

# Print the original type definitions
./config -format

# Fail to validate an invalid config file
./config -validate bad-config1.json || :

# Fail to validate another invalid config file (using custom validators)
./config -validate bad-config3.json || :

# Validate, inject missing defaults and pretty-print
./config -validate sample-config.json

This is the hand-written OCaml program. It can be used as a start
point for a real-world program using a JSON config file:





open Printf

let param_template =
  (* Sample item used to populate the template config file *)
  {
    Config_v.name = "foo";
    key = "0123456789abcdef"
  }

let config_template =
  (*
    Records can be conveniently created using functions generated by
    "atdgen -v".
    Here we use Config_v.create_config to create a record of type
    Config_t.config. The big advantage over creating the record
    directly using the record notation {...} is that we don't have to
    specify default values (such as timeout in this example).
  *)
  Config_v.create_config ~title:"" ~credentials: [param_template] ()

let make_json_template () =
  (* Thanks to the -j-defaults flag passed to atdgen, even default
    fields will be printed out *)
  let compact_json = Config_j.string_of_config config_template in
  Yojson.Safe.prettify compact_json

let print_template () =
  print_endline (make_json_template ())

let print_format () =
  print_string Config_atd.contents

let validate fname =
  let x =
    try
      (* Read config data structure from JSON file *)
      let x = Atdgen_runtime.Util.Json.from_file Config_j.read_config fname in
      (* Call the validators specified by <ocaml valid=...> *)
      if not (Config_v.validate_config x) then
        failwith "Some fields are invalid"
      else
        x
    with e ->
      (* Print decent error message and exit *)
      let msg =
        match e with
            Failure s
          | Yojson.Json_error s -> s
          | e -> Printexc.to_string e
      in
      eprintf "Error: %s\n%!" msg;
      exit 1
  in
  (* Convert config to compact JSON and pretty-print it.
    ~std:true means that the output will not use extended syntax for
    variants and tuples but only standard JSON. *)
  let json = Yojson.Safe.prettify ~std:true (Config_j.string_of_config x) in
  print_endline json

type action = Template | Format | Validate of string

let main () =
  let action = ref Template in
  let options = [
    "-template", Arg.Unit (fun () -> action := Template),
    "
          prints a sample configuration file";

    "-format", Arg.Unit (fun () -> action := Format),
    "
          prints the format specification of the config files (atd format)";

    "-validate", Arg.String (fun s -> action := Validate s),
    "<CONFIG FILE>
          reads a config file, validates it, adds default values
          and prints the config nicely to stdout";
  ]
  in
  let usage_msg = sprintf "\
Usage: %s [-template|-format|-validate ...]
Demonstration of how to manage JSON configuration files with atdgen.
"
    Sys.argv.(0)
  in
  let anon_fun s = eprintf "Invalid command parameter %S\n%!" s; exit 1 in
  Arg.parse options anon_fun usage_msg;

  match !action with
      Template -> print_template ()
    | Format -> print_format ()
    | Validate s -> validate s

let () = main ()





The full source code for this section with examples can be inspected
and downloaded here [https://github.com/ahrefs/atd/tree/master/doc/atdgen-tutorial-data/config-file].



Integration with ocamldoc

Ocamldoc is a tool that comes with the core OCaml distribution.
It uses comments within (** and *) to produce
hyperlinked documentation (HTML) of module signatures.

Atdgen can produce .mli files with comments in the syntax supported by
ocamldoc but regular ATD comments within (* and *)
are always discarded
by atdgen. Instead, <doc text=”…”> must be used and placed after the
element they describe. The contents of the text field must be UTF8-encoded.

type point = {
  x : float;
  y : float;
  ~z
    <doc text="Optional depth, its default value is {{0.0}}.">
    : float;
}
  <doc text="Point with optional 3rd dimension.

OCaml example:
{{{
let p =
  { x = 0.5; y = 1.0; z = 0. }
}}}
">





is converted into the following .mli file with
ocamldoc-compatible comments:

(**
  Point with optional 3rd dimension.

  OCaml example:

{v
let p =
  \{ x = 0.5; y = 1.0; z = 0. \}
v}
*)
type point = {
  x: float;
  y: float;
  z: float (** Optional depth, its default value is [0.0]. *)
}





The only two forms of markup supported by <doc text="..."> are {{ …
}} for inline code and {{{ … }}} for a block of preformatted code.



Integration with build systems


OMake

We provide an Atdgen plugin [https://github.com/mjambon/atdgen-omake] for
OMake [http://omake.metaprl.org]. It simplifies the compilation rules to a
minimum.

The plugin consists of a self-documented file to copy into a project’s root. The
following is a sample OMakefile for a project using JSON and five source
files (foo.atd, foo.ml, bar.atd, bar.ml and main.ml):

# require file Atdgen.om
include Atdgen

# OCaml modules we want to build
OCAMLFILES = foo_t foo_j foo bar_t bar_j bar main

Atdgen(foo bar, -j-std)
OCamlProgram(foobar, $(OCAMLFILES))

.DEFAULT: foobar.opt

.PHONY: clean
clean:
  rm -f *.cm[ioxa] *.cmx[as] *.[oa] *.opt *.run *~
  rm -f $(ATDGEN_OUTFILES)





Running omake builds the native code executable foobar.opt.

omake clean removes all the products of compilation including the .mli
and .ml produced by atdgen.



GNU Make

We provide Atdgen.mk [https://github.com/mjambon/atdgen-make], a generic
makefile that defines the dependencies and rules for generating OCaml .mli and
.ml files from .atd files containing type definitions. The Atdgen.mk file
contains its own documentation.

Here is a sample Makefile that takes advantage of
OCamlMakefile [http://mmottl.github.io/ocaml-makefile/]:

.PHONY: default
default: opt

ATDGEN_SOURCES = foo.atd bar.atd
ATDGEN_FLAGS = -j-std
include Atdgen.mk

SOURCES = \
  foo_t.mli foo_t.ml foo_j.mli foo_j.ml \
  bar_t.mli bar_t.ml bar_j.mli bar_j.ml \
  hello.ml
RESULT = hello
PACKS = atdgen
# "include OCamlMakefile" must come after defs for SOURCES, RESULT, PACKS, etc.
include OCamlMakefile

.PHONY: sources opt all
sources: $(SOURCES)
opt: sources
        $(MAKE) native-code
all: sources
        $(MAKE) byte-code





make alone builds a native code executable from source files foo.atd,
bar.atd and hello.ml. make clean removes generated files. make
all builds a bytecode executable.

In addition to native-code, byte-code and clean, OCamlMakefile
provides a number of other targets and options which are documented in
OCamlMakefile’s README.



Ocamlbuild

There is an atdgen plugin for ocamlbuild [https://github.com/hcarty/ocamlbuild-plugins/blob/master/myatdgen.ml].



Dune (formerly jbuilder)

Dune currently needs atdgen build rules specified manually. Given an example.atd,
this will usually look like:

(rule
 (targets example_j.ml
          example_j.mli)
 (deps    example.atd)
 (action  (run atdgen -j -j-std %{deps})))

(rule
 (targets example_t.ml
          example_t.mli)
 (deps    example.atd)
 (action  (run atdgen -t %{deps})))





You can refer to example_t.ml and example_j.ml as usual (by default, they
will be automatically linked into the library being built in the same directory).
You will need to write rules for each .atd file individually until
Dune supports wildcard rules [https://github.com/ocaml/dune/issues/307].

Note that any options atdgen supports can be included in the run atdgen
section (-open, -deriving-conv, etc.).




Dealing with untypable JSON

Sometimes we have to deal with JSON data that cannot be described
using type definitions. In such case, we can represent the data as its
JSON abstract syntax tree (AST), which lets the user inspect it at runtime.

Let’s consider a list of JSON objects for which we don’t know the type
definitions, but somehow some other system knows how to deal with such
data. Here is such data:

[
  {
    "label": "flower",
    "value": {
      "petals": [12, 45, 83.5555],
      "water": "a340bcf02e"
    }
  },
  {
    "label": "flower",
    "value": {
      "petals": "undefined",
      "fold": null,
      "water": 0
    }
  },
  { "labels": ["fork", "scissors"],
    "value": [ 8, 8 ]
  }
]





Hopefully this means something for someone. We are going to assume that each
object has a value field of an unknown type, and may have a field label
or a field labels of type string:

(* File untypable.atd *)

type obj_list = obj list

type obj = {
  ?label: string option;
  ?labels: string list option;
  value: abstract  (* requires ATD >= 2.6.0 *)
}





Until ATD 2.5, abstract could not be used as freely and would not
stand for raw JSON by default. One had to write a dedicated type
definition as shown below:

(* File untypable.atd *)

(* deprecated since ATD 2.6 *)
type json <ocaml module="Yojson.Safe"> = abstract
  (* uses type Yojson.Safe.t,
     with the functions Yojson.Safe.write_json
     and Yojson.Safe.read_json *)

type obj_list = obj list

type obj = {
  ?label: string option;
  ?labels: string list option;
  value: json
}





It is possible to give a different name than json to the type of the JSON
AST, but then the name of the type used in the original module must be provided
in the annotation, i.e.:

(* deprecated since ATD 2.6 *)
type raw_json <ocaml module="Yojson.Safe" t="json"> = abstract
  (* uses type Yojson.Safe.t,
     with the functions Yojson.Safe.write_json
     and Yojson.Safe.read_json *)

type obj_list = obj list

type obj = {
  ?label: string option;
  ?labels: string list option;
  value: raw_json
}





Compile either example with:

$ atdgen -t untypable.atd
$ atdgen -j -j-std untypable.atd
$ ocamlfind ocamlc -a -o untypable.cma -package atdgen \
    untypable_t.mli untypable_t.ml untypable_j.mli untypable_j.ml





Test the example with your favorite OCaml toplevel (ocaml or utop):

# #use "topfind";;
# #require "atdgen";;
# #load "untypable.cma";;
# Atdgen_runtime.Util.Json.from_channel Untypable_j.read_obj_list stdin;;
[
  {
    "label": "flower",
    "value": {
      "petals": [12, 45, 83.5555],
      "water": "a340bcf02e"
    }
  },
  {
    "label": "flower",
    "value": {
      "petals": "undefined",
      "fold": null,
      "water": 0
    }
  },
  { "labels": ["fork", "scissors"],
    "value": [ 8, 8 ]
  }
]
- : Untypable_t.obj_list =
[{Untypable_t.label = Some "flower"; labels = None;
  value =
  `Assoc
    [("petals", `List [`Int 12; `Int 45; `Float 83.5555]);
      ("water", `String "a340bcf02e")]};
{Untypable_t.label = Some "flower"; labels = None;
  value =
  `Assoc [("petals", `String "undefined");
          ("fold", `Null);
          ("water", `Int 0)]};
{Untypable_t.label = None; labels = Some ["fork"; "scissors"];
  value = `List [`Int 8; `Int 8]}]









          

      

      

    

  _static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to ATD’s documentation!
        


        		
          The ATD Project
        


        		
          The ATD Language
          
            		
              ATD core syntax reference
              
                		
                  Introduction
                


                		
                  ATD language
                


              


            


            		
              Interoperability with other tools
              
                		
                  JSON Schema
                


              


            


          


        


        		
          OCaml Support - atdgen
          
            		
              Tutorial
              
                		
                  What is atdgen?
                


                		
                  What are the advantages of atdgen?
                


                		
                  Prerequisites
                


                		
                  Getting started
                


                		
                  Inspecting and pretty-printing JSON
                


                		
                  Inspecting biniou data
                


                		
                  Optional fields and default values
                


                		
                  Smooth protocol upgrades
                


                		
                  Data validation
                


                		
                  Modularity: referring to type definitions from another ATD file
                


                		
                  Managing JSON configuration files
                


                		
                  Integration with ocamldoc
                


                		
                  Integration with build systems
                


                		
                  Dealing with untypable JSON
                


              


            


            		
              Atdgen reference
              
                		
                  Description
                


                		
                  Command-line usage
                


                		
                  Default type mapping
                


                		
                  ATD Annotations
                


                		
                  Atdgen runtime library
                


              


            


          


        


        		
          Java Support - atdj
          
            		
              Installation
            


            		
              Quick-start
            


            		
              Generating the interface
            


            		
              Generating Javadoc documentation
            


            		
              Generating a class graph
            


            		
              Translation reference
              
                		
                  Bools, ints, floats, string, lists
                


                		
                  Options
                


                		
                  Records
                


                		
                  Sums
                


                		
                  The Atdj and Visitor interfaces
                


              


            


          


        


        		
          Scala Support - atds
        


        		
          Python Support - atdpy
          
            		
              Tutorials
              
                		
                  Hello World
                


                		
                  ATD Records, JSON objects, Python classes
                


              


            


            		
              How-to guides
              
                		
                  Defining default field values
                


                		
                  Renaming field names
                


              


            


            		
              Deep dives
            


            		
              Reference
              
                		
                  Type mapping
                


                		
                  Supported ATD annotations
                


              


            


          


        


        		
          TypeScript Support - atdts
          
            		
              Tutorials
              
                		
                  Hello World
                


                		
                  ATD Records, JSON objects, TypeScript objects
                


              


            


            		
              How-to guides
              
                		
                  Defining default field values
                


                		
                  Renaming field names
                


              


            


            		
              Deep dives
            


            		
              Reference
              
                		
                  Type mapping
                


                		
                  Supported ATD annotations
                


              


            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





_static/up.png





_static/up-pressed.png





